Answer:
Moles of silver iodide produced = 1.4 mol
Explanation:
Given data:
Mass of calcium iodide = 205 g
Moles of silver iodide produced = ?
Solution:
Chemical equation:
CaI₂ + 2AgNO₃ → 2AgI + Ca(NO₃)₂
Number of moles calcium iodide:
Number of moles = mass/ molar mass
Number of moles = 205 g/ 293.887 g/mol
Number of moles = 0.7 mol
Now we will compare the moles of calcium iodide with silver iodide.
CaI₂ : AgI
1 : 2
0.7 : 2×0.7 = 1.4
Thus 1.4 moles of silver iodide will be formed from 205 g of calcium iodide.
Answer:
101.50 g H₂O
Explanation:
The mole ratio of HNO₃ and H₂O is 6 : 2
Hence, 16.9 moles of HNO₃ will produce = 2/6×16.9 = 5.63 moles of H₂O
Also,
Mass = Moles × M.Mass
Mass = 5.63 mol × 18.02 g/mol
Mass = 101.50 g H₂O
The characteristic of the Bohr model that would best support his observation is this assumption: "The energy of the electron in an orbit is proportional to its distance from the nucleus. The further the electron is from the nucleus, the more energy it has." The discrete, bright, colored lines might represent the electrons and its distance from the nucleus. The lights are caused by the energy it has.
Answer:
Explanation:
It's because of the sun! Bananas are curved so they can retrieve sunlight.