Look to be honest, I don't know how to work out the problem, but my teacher, and my says it takes 8 minutes for the Sun's light to reach
hope my answer works :)
Answer:
Approximately 6.81 × 10⁵ Pa.
Assumption: carbon dioxide behaves like an ideal gas.
Explanation:
Look up the relative atomic mass of carbon and oxygen on a modern periodic table:
Calculate the molar mass of carbon dioxide
:
.
Find the number of moles of molecules in that
sample of
:
.
If carbon dioxide behaves like an ideal gas, it should satisfy the ideal gas equation when it is inside a container:
,
where
is the pressure inside the container.
is the volume of the container.
is the number of moles of particles (molecules, or atoms in case of noble gases) in the gas.
is the ideal gas constant.
is the absolute temperature of the gas.
Rearrange the equation to find an expression for
, the pressure inside the container.
.
Look up the ideal gas constant in the appropriate units.
.
Evaluate the expression for
:
.
Apply dimensional analysis to verify the unit of pressure.
Answer:
magnesium ion Hg2+ cation is formed
Answer:
1. C
2. C
3. A
4. C
5. True
6. C
Explanation:
1. C The answer is conduction because the heat was transferred through direct contact.
2. C The answer convection because the heat was transferred through a medium (liquid/gas).
3. A The answer is conduction because the heat was transferred through direct contact.
4. C The answer is radiation because the heat was transferred through thermal emission.
5. True. This is because the air that is warmed rises, causing the cool air to replace it. You can picture it like the scenario in question 2.
6. C