Answer:
fluoride ion with a charge of -1
Explanation:
If a fluorine atom gains an electron, it becomes a fluoride ion with an electric charge of -1.
Here we have to compare the Bohr atomic model with electron cloud model.
In the Bohr's atomic model the electrons of an element is assumed to be particle in nature. Which was unable to explain the deBroglie' hypothesis or the uncertainty principle and has certain demerits.
The uncertainty principle reveals the wave nature of the electrons or electron clod model. The Bohr condition of a stable orbits of the electron can nicely be explained by the electron cloud model, the mathematical form of which is λ = nh/mv, where, λ = wavelength, n is the integral number, h = Planck's constant, m = mass of the electron and v = velocity of the electron.
The integral number i.e. n is similar to the mathematical form of Bohr's atomic model, which is mvr = nh/2π. (r = radius of the orbit).
Thus, the electron cloud model is an extension of the Bohr atomic model, which can explain the demerits of the Bohr model. Later it is revealed that the electron have both particle and wave nature. Which is only can explain all the features of the electrons around a nucleus of an element.
Answer:
pure water, pH = 7.0 (Neutral)
lake water, pH = 6.5 (Acidic)
baking soda solution, pH = 9 (Alkaline)
soapy water, pH = 12 (Alkaline)
Explanation:
The degree of acidicity or alkalinity of a solution can be determined on a pH meter. A pH below 7 is acidic; a pH of 7 is neutral; a pH value of above 7 is alkaline.
Answer:
C8H17N
Explanation:
Mass of the unknown compound = 5.024 mg
Mass of CO2 = 13.90 mg
Mass of H2O = 6.048 mg
Next, we shall determine the mass of carbon, hydrogen and nitrogen present in the compound. This is illustrated below:
For carbon, C:
Molar mass of CO2 = 12 + (2x16) = 44g/mol
Mass of C = 12/44 x 13.90 = 3.791 mg
For hydrogen, H:
Molar mass of H2O = (2x1) + 16 = 18g/mol
Mass of H = 2/18 x 6.048 = 0.672 mg
For nitrogen, N:
Mass N = mass of unknown – (mass of C + mass of H)
Mass of N = 5.024 – (3.791 + 0.672)
Mass of N = 0.561 mg
Now, we can obtain the empirical formula for the compound as follow:
C = 3.791 mg
H = 0.672 mg
N = 0.561 mg
Divide each by their molar mass
C = 3.791 / 12 = 0.316
H = 0.672 / 1 = 0.672
N = 0.561 / 14 = 0.040
Divide by the smallest
C = 0.316 / 0.04 = 8
H = 0.672 / 0.04 = 17
N = 0.040 / 0.04 = 1
Therefore, the empirical formula for the compound is C8H17N
Answer:
Water molecules pull the sodium and chloride ions apart
Explanation: