Intermolecular forces of attraction hold the molecules together. These forces determine the physical properties of substances like melting and boiling points. There are five types of intermolecular forces: Hydrogen bonding, dipole-dipole interactions, ionic interactions, ion-dipole interactions and dispersion forces.
Hydrogen bonding is a stronger force of attraction between hydrogen atom and an electronegative atom (F, N, and O). So, water molecules exhibit hydrogen bonding.
In carbon dioxide molecules, although each C=O is polar the molecule as a whole will be non polar due to symmetry. Therefore, the only intermolecular forces in CO2 will be dispersion forces.
Hence, Hydrogen bonding exists between water molecules but not carbon dioxide molecules.
Answer:
-10778.95 J heat must be removed in order to form the ice at 15 °C.
Explanation:
Given data:
mass of steam = 25 g
Initial temperature = 118 °C
Final temperature = 15 °C
Heat released = ?
Solution:
Formula:
q = m . c . ΔT
we know that specific heat of water is 4.186 J/g.°C
ΔT = final temperature - initial temperature
ΔT = 15 °C - 118 °C
ΔT = -103 °C
now we will put the values in formula
q = m . c . ΔT
q = 25 g × 4.186 J/g.°C × -103 °C
q = -10778.95 J
so, -10778.95 J heat must be removed in order to form the ice at 15 °C.
Answer:
has Two oxygen atoms
Explanation:
Oxygen is a diatomic element hence exists as O2 for majority of its existence in our atmosphere. Although small portion does exist in form of O3 which protects earth from sun's harmful ray, the majority portion of oxygen has O2 which is the oxygen we breathe.