Answer: 61 grams
Explanation:
To calculate the number of moles, we use the equation:


The chemical equation for the combustion of octane in oxygen follows the equation:
By stoichiometry of the reaction;
25 moles of oxygen react with 2 moles of octane
4.69 moles of oxygen react with=
moles of octane
Thus, oxygen is the limiting reagent as it limits the formation of product and octane is the excess reagent.
25 moles of oxygen produce 18 moles of water
4.69 moles of oxygen produce=
moles of water.
Mass of water produced=
The maximum mass of water that could be produced by the chemical reaction is 61 grams.
Answer:it will be c on edg 2021
Explanation:
I don’t know what the “cheater” way is, however you can easily judge how many valence electrons an element has by looking at its group number on the periodic table.
Bonding in chemistry is completely and totally due to electrons. Every element wants 8 electrons in its outer shell in order to be stable. This is what we call the “Octet Rule”.
Answer:
The answer to your question is 1.25 M
Explanation:
Data
Molarity 1 = ?
Volume 1 = 60 ml
Molarity 2 = 0.5 M
Volume 2 = 150 ml
Process
1.- Write the dilution formula
Molarity 1 x Volume 1 = Molarity 2 x Volume 2
-Solve for Molarity 1
Molarity 1 = Molarity 2 x Volume 2 / Volume 1
-Substitution
Molarity 1 = (0.5)(150) / 60
-Simplification
Molarity = 75 / 60
-Result
Molarity = 1.25 M