1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GREYUIT [131]
3 years ago
9

Suppose the sphere is electrically neutral. Is it attracted to

Physics
1 answer:
Elden [556K]3 years ago
8 0

Answer:

No, it is not attracted.

Explanation:

If any sphere is electrically neutral it is not attracted. The materials which are attracted by magnet are called magnetic material whereas which are not attracted are called non magnetic material. Sphere made up of non magnetic materials such as glass, wood, paper will not attracted weather is kept near north pole or near south pole.

You might be interested in
Define oxidation number
Delicious77 [7]

<span>a number assigned to an element in a chemical combo that represents the number of electrons lost or gained by atom of the element in the compound.</span>

8 0
3 years ago
Pls can anyone solve this​
gayaneshka [121]

Answer:

3 pls give me brainliest

Explanation:

8 0
3 years ago
Which force is greater the earth’s pull on the moon or the moon’s pull on the earth
Vitek1552 [10]

Answer:

The earth's pull on the moon

Explanation:

Earth exerts a gravitational pull on the moon 80 times stronger than the moon's pull on the Earth.

7 0
3 years ago
Three positive charges A, B, and C, and a negative charge D are placed in a line as shown in the diagram. All four charges are o
polet [3.4K]

Answer:

a. charge C experiences the greatest net force, and charge B receives the smallest net force

b. ratio=9

Explanation:

<u>Electrostatic Force</u>

Two point-charges q_1 and q_2 separated a distance d will exert a force on each other of a magnitude given by the Coulomb's formula

\displaystyle F=\frac{k\ q_1\ q_2}{r^2}

Where k is the proportional constant of value

k=9*10^9\ N.m^2/c^2

The diagram provided in the question shows four identical charges (let's assume their value is Q) separated by identical distance (of value d). The force between the charges next to others is

\displaystyle F_1=\frac{k\ Q\ Q}{d^2}

\displaystyle F_1=\frac{k\ Q^2}{d^2}

The force between charges separated 2d is

\displaystyle F_2=\frac{k\ Q^2}{(2d)^2}

\displaystyle F_2=\frac{k\ Q^2}{4d^2}

And the force between the charges A and D is

\displaystyle F_3=\frac{k\ Q^2}{(3d)^2}

\displaystyle F_3=\frac{k\ Q^2}{9d^2}

Now, let's analyze each charge and the force applied to them by the others

Let's recall equally signed charges repel each other and differently signed charges attrach each other

Charge A. It receives force to the left from B and C and to the right from D

\displaystyle F_A=-F_1-F_2+F_3=-\frac{k\ Q^2}{d^2}-\frac{k\ Q^2}{4d^2}+\frac{k\ Q^2}{9d^2}

\displaystyle F_A=\frac{k\ Q^2}{d^2}(-1-\frac{1}{4}+\frac{1}{9})

\displaystyle F_A=-\frac{41}{36}F_1

Charge B. It receives force to the right from A and D and to the left from C

\displaystyle F_B=F_1-F_1+F_2=\frac{k\ Q^2}{d^2}-\frac{k\ Q^2}{d^2}+\frac{k\ Q^2}{4d^2}

\displaystyle F_B=\frac{1}{4}F_1

Charge C. It receives forces to the right from all charges.

\displaystyle F_C=F_2+F_1+F_1=\frac{k\ Q^2}{4d^2}+\frac{k\ Q^2}{d^2}+\frac{k\ Q^2}{d^2}

\displaystyle F_C=\frac{9}{4}F_1

Charge D. It receives forces to the left from all charges

\displaystyle F_D=-F_3-F_2-F_1=-\frac{k\ Q^2}{9d^2}-\frac{k\ Q^2}{4d^2}-\frac{k\ Q^2}{d^2}

\displaystyle F_D=-\frac{49}{36}F_1

Comparing the magnitudes of each force is just a matter of computing the fractions

\displaystyle \frac{41}{36}=1.13,\ \frac{1}{4}=0.25,\ \frac{9}{4}=2.25,\ \frac{49}{36}=1.36

a.

We can see the charge C experiences the greatest net force, and charge B receives the smallest net force

b.

The ratio of the greatest to the smallest net force is

\displaystyle \frac{\frac{9}{4}}{\frac{1}{4}}=9

The greatest force is 9 times the smallest net force

7 0
3 years ago
A roller coaster car of mass m= 300 kg is released from rest at the top of a 60 m high hill (position A), and rolls with a negli
Andrews [41]

Answer: The principle of conservation of energy, angular speed and centripetal force

Explanation:

At point A, the car experienced maximum of potential energy

As it moves down the hill, the potential energy decreases while the kinetic energy increases.

The maximum kinetic energy of the car is needed for the attainment of enough centripetal force to help the car move through the loop without falling .

4 0
3 years ago
Other questions:
  • If the mass of a material is 48 grams and the volume of the material is 8 cm^3, what would the density of the material be?
    8·1 answer
  • Friction in a car's engine produces some wasted _____ energy.
    14·2 answers
  • What is the name of the process that describes the decrease in frequency
    7·1 answer
  • Nearly all physics problems will use the unit m/s^2 for acceleration. Explain why the seconds are squared. Why isn't the unit gi
    10·1 answer
  • What is the number of Kelvins between the freezing point and the boiling point of water at a pressure of 1 atm?
    5·1 answer
  • A sky diver of mass 53 kg can slow herself to a constant speed of 95 km/h by orienting her body horizontally, looking straight d
    15·1 answer
  • Why did the Founding Fathers want to include a bill of rights in the U.S.
    5·1 answer
  • Complete this paragraph regarding dangers from the Sun.
    13·2 answers
  • _____ are group of tissue working together to perform a certain job.
    9·1 answer
  • What is the temperature increase of 4.0 kg of water when it is heated by
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!