Answer:

Explanation:
We know that:
1 atm = 760 mm of Hg (Standardly)
Multiply both sides by 2.27
2.27 atm = 760 * 2.27 mm of Hg
2.27 atm = 1,725 mm of Hg
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>
Answer:
HCl < CH₃COOH < NH₃ < NaOH
Explanation:
Given compounds:
Acetic acid: CH₃COOH
Ammonia; NH₃
Hydrochloric acid: HCl
Sodium hydroxide: NaOH
All the solutions are of the same molarity which is 0.1M. We need to see how these compounds dissociate to form solutions in order to establish their pH value:
For Acetic acid;
CH₃COOH + H₂O ⇄ H₃O⁺ + CH₃COO⁻
Acetic acid is a weak acid and it ionizes slightly in solutions. It would have a pH close to 7
For Ammonia;
NH₃ + H₂O ⇄ NH₄⁺ + OH⁻
Ammonia is a weak base and it ionizes slightly in solutions. It sets up an equilibrium in the process. It's would be slightly above 7
For HCl:
HCl + H₂O → H₃O⁺ + Cl⁻
HCl is a strong acid and ionizes completely in solutions. It has a very low pH
For NaOH:
NaOH → Na⁺ + OH⁻
NaOH ionizes also completely in solutions and it breaks down into sodium and hydroxide ions. It is a strong base and it would have a high PH value.
HCl < CH₃COOH < NH₃ < NaOH
This is the trend of increasing pH
Answer:
C₄H₈O₂.
Explanation:
- Firstly, we can calculate the no. of moles (n) of each component using the relation:
<em>n = mass/atomic mass,</em>
mol C = mass/(atomic mass) = (54.5 g)/(12.0 g/mol) = 4.54 mol.
mol H = mass/(atomic mass) = (9.3 g)/(1.0 g/mol) = 9.3 mol.
mol O = mass/(atomic mass) = (36.2 g)/(16.0 g/mol) = 2.26 mol.
- To get the empirical formula, we divide by the lowest no. of moles (2.26 mol) of O:
∴ C: H: O = (4.54 mol/2.26 mol) : (9.3 mol/2.26 mol) : (2.26 mol/2.26 mol) = 2: 4: 1.
<em>∴ Empirical formula mass of (C₂H₄O) = 2(atomic mass of C) + 4(atomic mass of H) + 1(atomic mass of O) =</em> 2(12.0 g/mol) + 4(1.0 g/mol) + (16.0 g/mol)<em> = 44.0 g/mol.</em>
∴ Number of times empirical mass goes into molecular mass = (88.0 g/mol)/(44.0 g/mol) = 2.0 times.
∴ The molecular formula is, 2(C₂H₄O), that is; <em>(C₄H₈O₂)</em>
Answer:
The periodic table of elements puts all the known elements into groups with similar properties. This makes it an important tool for chemists, nanotechnologists, and other scientists. If you get to understand the periodic table and learn to use it, you'll be able to predict how chemicals will behave.
Answer:
A sample of helium gas has a volume of 620mL at a temperature of 500 K. If we ... to 100 K while keeping the pressure constant, what will the new volume be?
Explanation: