Answer:
As the amplitude of pendulum motion increases, the period lengthens, because the restoring force −mgsinθ increases more slowly than −mgθ (sinθ≅θ−θ3/3!for small angles).
Answer:
Alright, the first thing we have to do is to balance the chemical equation
2Na3N -----> 6Na + 1N2
We have 60g of Na3N, we convert them into moles by dividing the mass of the compound by the molar mass.
Molar mass of Na3N = (22.98 x 3) + (14) = 82.94g/mol
<u>60</u> = 0.72341451651 moles of Na3N
82.94
Now because we did the balanced equation, we know the mole to mole ratio of Na3N to N2 would be 2:1, so in order to get the moles of N2 you have to divide the moles of Na3N by 2
0.72341451651 moles/2 = 0.361707258 moles of N2
Now that we have the moles of N2, we just have to determine the mass of it in grams. In order to do that, just multiply the moles by the molar mass of N2 (28g/mol)
0.361707258 x 28 = <u>10.13g of N2</u>
<u>Therefore the decomposition of 60g of Na3N would result in 10.13g of N2 (nitrogen gas)</u>
the first law says that the change in internal energy of a system is given by:
δ<span>E = δq + δw</span>
where δ<span>E is the i change in internal energy, </span>
<span>δq is the amount of thermal energy added to the system from the surroundings </span>
<span>δw is the l work done *on* the system *by* the surroundings. </span>
<span>For a system only undergoing expansion work,
δw = -p</span>δ<span>V, so: </span>
δE = δq - p δ<span>V </span>
when δV = 0, then δe=δq
Answer:
Explanation:
Start with the number of grams of each element, given in the problem.
Convert the mass of each element to moles using the molar mass from the periodic table.
Divide each mole value by the smallest number of moles calculated.
Round to the nearest whole number. This is the mole ratio of the elements and is.
Answer:
12.455≈12.5 tons
Explanation:
1 US gallon of water (gal) = 8.35 pounds of water (lb wt.)
so we divide 208,000 by 8.35 to covert to pounds
then divide the pounds by 2000 to convert to tons.