I think this is correct, but I am not entirely certain.
Find the force constant of the spring:
F = - KX
(0 - 62.4) = -K(0.172m)
-362.791 = -K
362.791 N/m = K
Find the work done in stretching the spring:
W = (1/2)KX
W = (1/2)(362.791)(0.172m)
W = 31.2 J
Answer:
The answer is "Option C".
Explanation:
Computation modeling is used as the software for math, physics, or software engineering in the simulation and study of complicated processes. The software framework incorporates many parameters, that characterize the model under study. It is a computer program, in which the mathematical formula is generated by computers and research complex systems.
The motion of the ball on the vertical axis is an accelerated motion, with acceleration

The following relationship holds for an uniformly accelerated motion:

where S is the distance covered, vf the final velocity and vi the initial velocity.
If we take the moment the ball reaches the maximum height (let's call this height h), then at this point of the motion the vertical velocity is zero:

So we can rewrite the equation as

from which we can isolate h

(1)
Now let's assume that

is the initial velocity of the first ball. The second ball has an initial velocity that is twice the one of the first ball:

. So the maximum height of the second ball is

(2)
Which is 4 times the height we found in (1). Therefore, the maximum height of ball 2 is 4 times the maximum height of ball 1.
Answer:
Explanation:
The energy of Mass-Spring System the sum of the potential energy of the block plus the kinetic energy of the block:

Where:

There are two cases, the first case is when the spring is compressed to its maximum value, in this case the value of the kinetic energy is zero, since there is no speed, so:

The second case is when the block passes through its equilibrium position, in this case the elastic potential energy is zero since
, so:

Now, let's find the energy of the system when the block is replaced by one whose mass is twice the mass of the original block using the previous data:

Where in this case:

Therefore:

Answer:
0.3858 Nm
Explanation:
The torque of the couple is the dot product of the force vector and the couple vector from 1 end of the ruler to the center. This equals to the product of their magnitude times the cosine() of the angle made by their direction:
