Answer:

Explanation:
As we know by energy conservation
initial total energy = final total energy
so we have

so we have






Answer:
The magnitude of the centripetal force that acts on him
Explanation:
Given that,
Mass = 80.0 kg
Distance = 6.10 m
Speed = 6.80 m/s
We need to calculate the magnitude of the centripetal force that acts on him
Using formula of the centripetal force

Where, F = force
m = mass
v = speed
r = distance
Put the value into the formula


Hence, The magnitude of the centripetal force that acts on him
Answer:
the answer is probably most likely D first and if thats incorrect than its B
♡ <em>Hope</em><em> </em><em>it</em><em> </em><em>helps</em><em>♡</em>
The acceleration of the first block (4 kg) is -9.8 m/s².
The given parameters:
- <em>Mass of the first block, m₁ = 4.0 kg</em>
- <em>Mass of the second block, m₂ = 2.0 kg</em>
The net force on the system of the two blocks is calculated as follows;

where;
- <em>T </em><em>is the tension in the connecting string due weight of the first block</em>

Thus, the acceleration of the first block (4 kg) is -9.8 m/s².
Learn more about net force on two connected blocks here: brainly.com/question/13539944