M1U1 + M2V2 = (M1+M2)V, where M1 is the mass of the moving car, M2 is the mass of the stationary car, U1 is the initial velocity, and V is the common velocity after collision.
therefore;
(1060× 16) + (1830 ×0) = (1060 +1830) V
16960 = 2890 V
V = 5.869 m/s
The velocity of the cars after collision will be 5.689 m/s
NO musical instrument produces a 'pure' tone with only a
single frequency in it.
EVERY instrument produces more or less harmonics (multiples)
in addition to the basic frequency it's playing.
The percussion instruments (drums etc) are the richest producers
of bunches of different frequencies.
Fuzzy electric guitars are next richest.
The strings and brass instruments are moderate producers of
harmonics ... I can't remember which is greater than the other.
Then come the woodwinds ... clarinet, oboe, etc.
The closest to 'pure' tones of single frequency are the sounds
made by the flute and piccolo, but even these are far from 'pure'.
The only way to get a true single-frequency sound is from an
electronic 'sine wave' generator.
Hello,
The answer is option A "Venus".
Reason:
The planet Venus spins the wrong way many scientists are not sure why. Its not options B, C, or D because these planets spin the same way the as each other. (besides Venus) Therefore the answer is option A.
If you need anymore help feel free to ask me!
Hope this helps!
~Nonportrit
Answer:
Potential energy of spring = 24 Joules.
Explanation:
Given the following data;
Spring constant = 85N/m
Extension, e = 0.75m
Mass = 25kg
To find the potential energy of a spring
Potential energy of a spring is given by the formula;
P.E = ½ke²
Substituting into the equation, we have
P.E = ½*85*0.75²
P.E = 42.5 * 0.5625
P.E = 23.91 ≈ 24 Joules
P.E = 24 Joules