A variable is a letter so just be like
13a or something like that
Answer and Explanation:
Limitation of Doppler shift :
The Doppler impact is relevant when the speeds of the wellspring of sound and spectator are considerably less than the speed of sound. The movement of both the spectator and the source is along a similar straight line.When movement is not in straight line or velocity is not much less than speed of light then we can not use Doppler shift
This is the limitation of Doppler shift to determine the object distance
<span>1) The differential equation that models the RC circuit is :
(d/dt)V_capacitor </span>+ (V_capacitor/RC) = (V_source/<span>RC)</span>
<span>Where the time constant of the circuit is defined by the product of R*C
Time constant = T = R*C = (</span>30.5 ohms) * (89.9-mf) = 2.742 s
2) C<span>harge of the capacitor 1.57 time constants
1.57*(2.742) = 4.3048 s
The solution of the differential equation is
</span>V_capac (t) = (V_capac(0) - V_capac(∞<span>))e ^(-t /T) + </span>V_capac(∞)
Since the capacitor is initially uncharged V_capac(0) = 0
And the maximun Voltage the capacitor will have in this configuration is the voltage of the battery V_capac(∞) = 9V
This means,
V_capac (t) = (-9V)e ^(-t /T) + 9V
The charge in a capacitor is defined as Q = C*V
Where C is the capacitance and V is the Voltage across
V_capac (4.3048 s) = (-9V)e ^(-4.3048 s /T) + 9V
V_capac (4.3048 s) = (-9V)e ^(-4.3048 s /2.742 s) + 9V
V_capac (4.3048 s) = (-9V)e ^(-4.3048 s /2.742 s) + 9V = -1.87V +9V
V_capac (4.3048 s) = 7.1275 V
Q (4.3048 s) = 89.9mF*(7.1275V) = 0.6407 C
3) The charge after a very long time refers to the maximum charge the capacitor will hold in this circuit. This occurs when the voltage accross its terminals is equal to the voltage of the battery = 9V
Q (∞) = 89.9mF*(9V) = 0.8091 C
Answer:
a ) 11.1 *10^3 m/s = 39.96 Km/h
b) T_{o2} =1.58*10^5 K
Explanation:
a)
= 11.1 km/s =11.1 *10^3 m/s = 39.96 Km/h
b)
M_O2 = 32.00 g/mol =32.0*10^{-3} kg/mol
gas constant R = 8.31 j/mol.K

So, 
multiply each side by M_{o2}, so we have

solving for temperature T_{o2}

In the question given,

T_{o2} =1.58*10^5 K