The units for G must be ![[N][m^2][kg^{-2}]](https://tex.z-dn.net/?f=%5BN%5D%5Bm%5E2%5D%5Bkg%5E%7B-2%7D%5D)
Explanation:
The magnitude of the gravitational force between two objects is given by:

where
F is the force
G is the gravitational constant
are the masses of the two objects
is the separation between the objects
We know that:
- The units of F are Newtons (N)
- The units of
are kilograms (kg) - The units of
are metres (m)
So, we can rewrite the equation in terms of G, to find its units:
![G=\frac{Fr^2}{m_1 m_2}=\frac{[N][m]^2}{[kg][kg]}=[N][m^2][kg^{-2}]](https://tex.z-dn.net/?f=G%3D%5Cfrac%7BFr%5E2%7D%7Bm_1%20m_2%7D%3D%5Cfrac%7B%5BN%5D%5Bm%5D%5E2%7D%7B%5Bkg%5D%5Bkg%5D%7D%3D%5BN%5D%5Bm%5E2%5D%5Bkg%5E%7B-2%7D%5D)
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Answer:
12.7m/s
Explanation:
Given parameters:
Mass of the diver = 77kg
Height = 8.18m
Unknown:
Final velocity = ?
Solution:
To solve this problem, we use one of the motion equations.
v² = u² + 2gh
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
h is the height
v² = 0² + (2 x 9.8 x 8.18)
v² = 160.3
v = 12.7m/s
Increase in sea water pollution
Answer:
change in internal energy 3.62*10^5 J kg^{-1}
change in enthalapy 5.07*10^5 J kg^{-1}
change in entropy 382.79 J kg^{-1} K^{-1}
Explanation:
adiabatic constant 
specific heat is given as 
gas constant =287 J⋅kg−1⋅K−1

specific heat at constant volume

change in internal energy 

change in enthalapy 

change in entropy



Its simple use formuila ,
PV=nRT
n,R is constant as the both have same moles.
so,
(p1v1)/T1 = (p2v2)/T2
so, 128.53338kpa