Using the theorem of kinetic energy
1/2mVf² - 1/2mVi²= WF + Wp, Wp=0
WF = F. AB, AB=5m and F= 40N, m=20kg
so the final kinetic is KEf= 1/2mVf² = WF =<span>F. AB= 40*5=200J
</span>
the final velocity is 1/2mVf² <span>=200, implies Vf= sqrt(20)=2sqrt(5)m/s</span>
You would want to include qualitative and quantitative evidence
If two people hit identical tennis balls at the same time, the ball that has the most kinetic energy is the ball that moves at the fastest speed.
<u>Explanation:</u>
The energy possessed by an object by virtue of its motion is called its kinetic energy indicating that only moving objects have kinetic energy. The kinetic energy of an object depends on its speed and mass.
It is given by the expression

where m denotes the mass of the object and v denotes its velocity.
since kinetic energy is directly proportional to the square of the velocity, the kinetic energy of an object increases with its velocity.
Hence an object that moves at the fastest speed will have the most kinetic energy.
Answer:
426.84 m
Explanation:
initial velocity u = 0
time t = 3.3 s
distance travelled s = 53.4 m
acceleration due to gravity = g
s = ut + 1/2 g t²
53.4 = 0 + 1/2 g x 3.3²
g = 9.8 m /s²
For the whole length of fall
distance travelled = h
total time = 6.6 + 3.3 = 9.9 s
h = ut + 1/2 g t²
u again = 0
h = .5 x 9.8 x 9.9²
= 480.24 m
distance travelled in last 6.6 s
= 480.24 - 53.4
= 426.84 m
Answer:
Temperature after ignition=7883.205 K
Explanation:
The number of moles is,
n=PV/RT
=(1.18x10^6)(47.9x10^-6)/8.314(325)
= 0.0209 moles
a) In this process volume is constant
Q=U
=nCv.dT
dT= Q/nCv
=1970/(1.5x8.314)(0.0209)
= 7558.205 K
The final temperature is,
= 7558.205+325
= 7883.205 K