Answer: 1: (A) They allow electrons to move freely between them. 2: (C) they change their positions relative to one another.
Explanation:
Answer:
answer a, 4
Explanation:
when the 4 is before the compound it applies to the whole compound
you take a length of ordinary wire, make it into a big loop, and lay it between the poles of a powerful, permanent horseshoe magnet. Now if you connect the two ends of the wire to a battery, the wire will jump up briefly.When an electric current starts to creep along a wire, it creates a magnetic field all around it. If you place the wire near a permanent magnet, this temporary magnetic field interacts with the permanent magnet's field.
Answer: Given:
Initial velocity= 36km/h=36x5/18=10m/s
Final velocity =54km/h=54x5/18=15m/s
Time =10sec
Acceleration = v-u/ t
=15-10/10=5/10=1/2=0.5 m/s2
Distance =s=?
From second equation of motion:
S=ut +1/2 at^2
=10*10+1/2*0.5*10*10
=100+25
=125m
So distance travelled 125m
Hope it helps you
Answer:
m = 35.98 Kg ≈ 36 Kg
Explanation:
I₀ = 125 kg·m²
R₁ = 1.50 m
ωi = 0.600 rad/s
R₂ = 0.905 m
ωf = 0.800 rad/s
m = ?
We can apply The law of conservation of angular momentum as follows:
Linitial = Lfinal
⇒ Ii*ωi = If*ωf <em>(I)</em>
where
Ii = I₀ + m*R₁² = 125 + m*(1.50)² = 125 + 2.25*m
If = I₀ + m*R₂² = 125 + m*(0.905)² = 125 + 0.819025*m
Now, we using the equation <em>(I) </em>we have
(125 + 2.25*m)*0.600 = (125 + 0.819025*m)*0.800
⇒ m = 35.98 Kg ≈ 36 Kg