We are given with a volume of a cube equal to 512 cm3. In this case, when the volume is expressed to cubic meters, the volume will still stay the same but the number of cubic units would decrease. a centimeter is a smaller unit than a meter, hence the value given should be divided by 1 million to express to m3.
Answer:
The total energy stays the same but is converted from being stored as gravitational potential energy into kinetic energy of the car as it moves.
Explanation:
the law of conservation of energy states that the total energy of an isolated system remains constant, and since it is gaining speed that energy will be kinetic
<span>The answers are --
a) wind direction
b) wind speed
e) intensity of precipitation
f) location of precipitation</span>
Answer:
Answer:
Debt payments to income ratio = 22.74%
Explanation:
Debts payment to Income ratio is calculated as follows:
= \frac{Total\ debt\ payment}{Total\ Income}
Total Income
Total debt payment
We have total debts payment = auto loan payment 685 + student loan payment685+studentloanpayment375 + credit card payment 125 =125=1,185
Total Income = $5,210
Note: Credit card is also a kind of debt as firstly all the expenses are met during the period and then the payment is made at the end of the period, therefore, there is a loan in the period. Therefore, it will be considered for payment of debt.
Debt payments to income ratio = \frac{1,185}{5,210} = 22.74
5,210
1,185
=22.74
That means the debts are 22.74% of income.
To solve this problem we will apply the principle of buoyancy of Archimedes and the relationship given between density, mass and volume.
By balancing forces, the force of the weight must be counteracted by the buoyancy force, therefore




Here,
m = mass
g =Gravitational energy
The buoyancy force corresponds to that exerted by water, while the mass given there is that of the object, therefore

Remember the expression for which you can determine the relationship between mass, volume and density, in which

In this case the density would be that of the object, replacing

Since the displaced volume of water is 0.429 we will have to


The density of water under normal conditions is
, so


The density of the object is 