Answer:
9.25 x 10^-4 Nm
Explanation:
number of turns, N = 8 
major axis = 40 cm 
semi major axis, a = 20 cm = 0.2 m 
minor axis = 30 cm 
semi minor axis, b = 15 cm = 0.15 m 
current, i = 6.2 A
Magnetic field, B = 1.98 x 10^-4 T 
Angle between the normal and the magnetic field is 90°. 
Torque is given by 
τ = N i A B SinФ
Where, A be the area of the coil. 
Area of ellipse, A = π ab = 3.14 x 0.20 x 0.15 = 0.0942 m²
τ = 8 x 6.20 x 0.0942 x 1.98 x 10^-4 x Sin 90°
τ = 9.25 x 10^-4 Nm
thus, the torque is 9.25 x 10^-4 Nm.
 
        
             
        
        
        
Answer:
solution:
dT/dx =T2-T1/L 
& 
q_x = -k*(dT/dx)
<u>Case (1)  </u>
dT/dx= (-20-50)/0.35==> -280 K/m
  q_x  =-50*(-280)*10^3==>14 kW
Case (2) 
dT/dx= (-10+30)/0.35==> 80 K/m
  q_x  =-50*(80)*10^3==>-4 kW
Case (2) 
dT/dx= (-10+30)/0.35==> 80 K/m
  q_x  =-50*(80)*10^3==>-4 kW
Case (3) 
q_x  =-50*(160)*10^3==>-8 kW
T2=T1+dT/dx*L=70+160*0.25==> 110° C
Case (4) 
q_x  =-50*(-80)*10^3==>4 kW
T1=T2-dT/dx*L=40+80*0.25==> 60° C
Case (5) 
q_x  =-50*(200)*10^3==>-10 kW
T1=T2-dT/dx*L=30-200*0.25==> -20° C
note:
all graph are attached
 
        
             
        
        
        
The horizontal force is m*v²/Lh, where m is the total mass. The vertical force is the total weight (233 + 840)N. 
<span>Fx = [(233 + 840)/g]*v²/7.5 </span>
<span>v = 32.3*2*π*7.5/60 m/s = 25.37 m/s </span>
<span>The horizontal component of force from the cables is Th + Ti*sin40º and the vertical component of force from the cable is Ta*cos40º </span>
<span>Thh horizontal and vertical forces must balance each other. First the vertical components: </span>
<span>233 + 840 = Ti*cos40º </span>
<span>solve for Ti. (This is the answer to the part b) </span>
<span>Horizontally </span>
<span>[(233 + 840)/g]*v²/7.5 = Th + Ti*sin40º </span>
<span>Solve for Th </span>
<span>Th = [(233 + 840)/g]*v²/7.5 - Ti*sin40º </span>
<span>using v and Ti computed above.</span>
        
             
        
        
        
Answer:
1.97×10⁻²¹ J
Explanation:
Use ideal gas law to find temperature.
PV = nRT
(9 atm) (9 L) = (83.3 mol) (0.0821 L·atm/mol/K) T
T = 11.9 K
The average kinetic energy per atom is:
KE = 3/2 kT
KE = 3/2 (1.38×10⁻²³ J/K) (11.9 K)
KE = 2.46×10⁻²² J
For a mass of 5.34×10⁻²⁶ kg, the kinetic energy is:
KE = (5.34×10⁻²⁶ kg) (1 mol / 0.004 kg) (6.02×10²³ atom/mol) (2.46×10⁻²² J)
KE = 1.97×10⁻²¹ J