Answer:
Explanation:
Given that,
Surface area A= 17m²
The speed at the top v" = 66m/s
Speed beneath is v' =40 m/s
The density of air p =1.29kg/m³
Weight of plane?
Assuming that,
the height difference between the top and bottom of the wind is negligible and we can ignore any change in gravitational potential energy of the fluid.
Using Bernoulli equation
P'+ ½pv'²+ pgh' = P'' + ½pv''² + pgh''
Where
P' is pressure at the bottom in N/m²
P" is pressure at the top in N/m²
v' is velocity at the bottom in m/s
v" is velocity at the top in m/s
Then, Bernoulli equation becomes
P'+ ½pv'² = P'' + ½pv''²
Rearranging
P' — P'' = ½pv"² —½pv'²
P'—P" = ½p ( v"² —v'²)
P'—P" = ½ × 1.29 × (66²-40²)
P'—P" = 1777.62 N/m²
Lift force can be found from
Pressure = force/Area
Force = ∆P ×A
Force = (P' —P")×A
Since we already have (P'—P")
Then, F=W = (P' —P")×A
W = 1777.62 × 17
W = 30,219.54 N
The weight of the plane is 30.22 KN
Answer:
a. 12.12°
b. 412.04 N
Explanation:
Along vertical axis, the equation can be written as
T_1 sin14 + T_2sinA = mg
T_2sinA = mg - T_1sin12.5 ....................... (a)
Along horizontal axis, the equation can be written as
T_2×cosA = T_1×cos12.5 ......................... (b)
(a)/(b) given us
Tan A = (mg - T_1sin12.5) / T_1 cos12.5
= (176 - 413sin12.5) / 413×cos12.5
A = 12.12 °
(b) T2 cosA = T1 cos12.5
T2 = 413cos12.5/cos12.12
= 412.04 N
The law of conservation of energy is:
-- Energy can't be created or destroyed.
-- Energy can't just appear out of nowhere. If you suddenly have
more energy, then the 'extra' energy had to come from somewhere.
-- Energy can't just disappear. If you suddenly have less energy,
then the 'missing' energy had to go somewhere.
________________________________________
There are also conservation laws for mass and electric charge.
They say exactly the same thing. Just write 'mass' or 'charge'
in the sentences up above, in place of the word 'energy'.
________________________________________
And now I can tell you that the conservation laws for energy and mass
are actually one single law ... the conservation of mass/energy. That's
because we discovered about 100 years ago that mass can convert
into energy, and energy can convert into mass, and it's the total of BOTH
of them that gets conserved (can't be created or destroyed).
How much mass makes how much energy ?
The answer is E = m c² .
According to Boyle’s law, For a fixed amount of an ideal gas kept at a fixed temperature, P (pressure) and V (volume) are inversely proportional.
Therefore,

Given
,
and
.
Thus,

Answer:
(b) The electrons, because they have the smaller momentum and, hence, the larger de Broglie wavelength
Explanation:
de Broglie wavelength λ = h / m v
Since both electrons and protons have same velocity , momentum mv will be less for electrons because mass of electron is less .
for electron , momentum is less so . Therefore de Broglie wavelength λ will be more for electrons .
Amount of diffraction that is angle of diffraction is proportional to λ
Therefore electrons having greater de Broglie wavelength will show greater diffraction.