The vertical component is = vsinx m/s
If you know the angle, substitute the value of x.
If you know the velocity at which it is moving, substitute it for v
Hope it helps :)
Answer:
a) ![(Qa*g*Vb)-(Qh*Vb*g)=(Qh*Vb*a)\\where \\g=gravity [m/s^2]\\a=acceleration [m/s^2]](https://tex.z-dn.net/?f=%28Qa%2Ag%2AVb%29-%28Qh%2AVb%2Ag%29%3D%28Qh%2AVb%2Aa%29%5C%5Cwhere%20%5C%5Cg%3Dgravity%20%5Bm%2Fs%5E2%5D%5C%5Ca%3Dacceleration%20%5Bm%2Fs%5E2%5D)
b) a = 19.61[m/s^2]
Explanation:
The total mass of the balloon is:
![massball=densityheli*volumeheli\\\\massball=0.41 [kg/m^3]*0.048[m^3]\\massball=0.01968[kg]\\\\](https://tex.z-dn.net/?f=massball%3Ddensityheli%2Avolumeheli%5C%5C%5C%5Cmassball%3D0.41%20%5Bkg%2Fm%5E3%5D%2A0.048%5Bm%5E3%5D%5C%5Cmassball%3D0.01968%5Bkg%5D%5C%5C%5C%5C)
The buoyancy force acting on the balloon is:
![Fb=densityair*gravity*volumeball\\Fb=1.23[kg/m^3]*9.81[m/s^2]*0.048[m^3]\\Fb=0.579[N]](https://tex.z-dn.net/?f=Fb%3Ddensityair%2Agravity%2Avolumeball%5C%5CFb%3D1.23%5Bkg%2Fm%5E3%5D%2A9.81%5Bm%2Fs%5E2%5D%2A0.048%5Bm%5E3%5D%5C%5CFb%3D0.579%5BN%5D)
Now we need to make a free body diagram where we can see the forces that are acting over the balloon and determinate the acceleration.
In the attached image we can see the free body diagram and the equation deducted by Newton's second law
Answer:
<u>Distance</u><u> </u><u>between</u><u> </u><u>them</u><u> </u><u>is</u><u> </u><u>4</u><u>,</u><u>2</u><u>0</u><u>0</u><u> </u><u>meters</u><u>.</u>
Explanation:
Consinder car A:

substitute:

Consider car B:

since these cars move in opposite directions, distance between them is their summation:

<span>122 g * 4,186 (j/g*°c) * 23°c = 11745.916 j </span>
-- Accelerating at the rate of 8 m/s², Andy's speed
after 30 seconds is
(8 m/s²) x (30.0 s) = 240 m/s .
-- His average speed during that time is
(1/2) (0 + 240 m/s) = 120 m/s .
-- In 30 sec at an average speed of 120 m/s,
Andy will travel a distance of
(120 m/s) x (30 sec) = 3,600 m
= 3.6 km .
"But how ? ! ?", you ask.
How in the world can Andy leave a stop light and then
cover 3.6 km = 2.24 miles in the next 30 seconds ?
The answer is: His acceleration of 8 m/s², or about 0.82 G
is what does it for him.
At that rate of acceleration ...
-- Andy achieves "Zero to 60 mph" in 3.35 seconds,
and then he keeps accelerating.
-- He hits 100 mph in 5.59 seconds after jumping the light ...
and then he keeps accelerating.
-- He hits 200 mph in 11.2 seconds after jumping the light ...
and then he keeps accelerating.
-- After accelerating at 8 m/s² for 30 seconds, Andy and his
car are moving at 537 miles per hour !
We really don't know whether he keeps accelerating,
but we kind of doubt it.
A couple of observations in conclusion:
-- We can't actually calculate his displacement with the information given.
Displacement is the distance and direction between the starting- and
ending-points, and we're not told whether Andy maintains a straight line
during this tense period, or is all over the road, adding great distance
but not a lot of displacement.
-- It's also likely that sometime during this performance, he is pulled
over to the side by an alert cop in a traffic-control helicopter, and
never actually succeeds in accomplishing the given description.