An increase in thermal energy, changes the state of matter from solid to liquid to gas.
<u>Answer:</u> The other isotope is 
<u>Explanation:</u>
Beta decay is defined as the decay process in which a neutron gets converted to a proton and an electron.
In this decay process, beta particle is emitted. The emitted particle carries a charge of -1 units and has a mass of 0 units. The released beta particle is also known as electron.
The general equation for the beta decay process follows:

The chemical equation for the beta decay of an isotope that produces Sr-87 isotope follows:

The isotope that undergoes beta decay to form Strontium-87 isotope is Rubidium-87
Hence, the other isotope is 
Answer:
A
Explanation:
A common example of heterogeneous catalysis is the hydrogenation reaction of simple alkenes. The conversion of ethene (C2H4) to ethane (C2H6) can be performed with hydrogen gas in the presence of a metal catalyst such as palladium (“Conversion of Ethene to Ethane with Hydrogen and a Metal Catalyst”).
Answer:
B. CH3COOH pH > 4.7 (4.8)
Explanation:
- CH3COOH + NaOH ↔ CH3COONa + H2O
- CH3COONa + NaOH ↔ CH3COONa
∴ mol NaOH = (5 E-3 L)*(0.10 mol/L) = 5 E-4 mol
⇒ mol CH3COOH = (0.05 L)*(0.20 mol/L) = 0.01 mol
⇒ <em>C</em> CH3COOH = (0.01 mol - 5 E-4 mol) / (0.105 L)
⇒ <em>C</em> CH3COOH = 0.0905 M
∴ mol CH3COONa = (0.05 L )*(0.20 mol/L) = 0.01 mol
⇒ <em>C</em> CH3COONa = (0.01 mol + 5 E-4 mol) / (0.105 L )
⇒ <em>C</em> CH3COONa = 0.1 M
∴ Ka = ([H3O+]*(0.1 + [H3O+])) / (0.0905 - [H3O+]) = 1.75 E-5
⇒ 0.1[H3O+] + [H3O+]² = (1.75 E-5)*(0.0905 - [H3O+])
⇒ [H3O+]² 0.1[H3O+] = 1.584 E-6 - 1.75 E-5[H3O+]
⇒ [H3O+]² + 0.1000175[H3O+] - 1.584 E-6 = 0
⇒ [H3O+] = 1.5835 E-5 M
∴ pH = - Log [H3O+]
⇒ pH = - Log (1.5835 E-5)
⇒ pH = 4.8004 > 4.7
In order to do this you must add up all of the molar masses of each compound and then judge accordingly.