Answer:
In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time.[1] More specifically, the equations of motion describe the behaviour of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system.[2] The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.
Well a basic explanation is that some elements have enough electrons to be considered stable. These elements do not need to react with other elements to gain more electrons. Reactive elements are no where near stable; they respond with other elements in order to become stable. The more unstable, the harsher the reaction is.
Answer:
<h3>The answer is 11 mL</h3>
Explanation:
To find the volume of the object we use the formula
volume of object = final volume of water - initial volume of water
From the question
final volume of water = 86 mL
initial volume of water = 75 mL
So we have
volume of object = 86 - 75
We have the final answer as
<h3>11 mL</h3>
Hope this helps you
Hey can u give a little more detail?