1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dangina [55]
3 years ago
8

One strategy in a snowball fight is to throw

Physics
1 answer:
faltersainse [42]3 years ago
7 0

Answers:

a) \theta_{2}=23\°

b) t=1.199 s

Explanation:

This situation is a good example of the projectile motion or parabolic motion, in which the travel of the snowball has two components: <u>x-component</u> and <u>y-component</u>. Being their main equations as follows for both snowballs:

<h3><u>Snowball 1:</u></h3>

<u>x-component: </u>

x=V_{o}cos\theta_{1} t_{1}   (1)

Where:

V_{o}=11.1 m/s is the initial speed  of snowball 1 (and snowball 2, as well)

\theta_{1}=67\° is the angle for snowball 1

t_{1} is the time since the snowball 1 is thrown until it hits the opponent

<u>y-component: </u>

y=y_{o}+V_{o}sin\theta_{1} t_{1}+\frac{gt_{1}^{2}}{2}   (2)

Where:

y_{o}=0  is the initial height of the snowball 1 (assuming that both people are only on the x axis of the frame of reference, therefore the value of the position in the y-component is zero.)

y=0  is the final height of the  snowball 1

g=-9.8m/s^{2}  is the acceleration due gravity (always directed downwards)

<h3><u>Snowball 2:</u></h3>

<u>x-component: </u>

x=V_{o}cos\theta_{2} t_{2}   (3)

Where:

\theta_{2} is the angle for snowball 2

t_{2} is the time since the snowball 2 is thrown until it hits the opponent

<u>y-component: </u>

y=y_{o}+V_{o}sin\theta_{2} t_{2}+\frac{gt_{2}^{2}}{2}   (4)

Having this clear, let's begin with the answers:

<h2>a) Angle for snowball 2</h2>

Firstly, we have to isolate t_{1} from (2):

0=0+V_{o}sin\theta_{1} t_{1}+\frac{gt_{1}^{2}}{2}   (5)

t_{1}=-\frac{2V_{o}sin\theta_{1}}{g}   (6)

Substituting (6) in (1):

x=V_{o}cos\theta_{1}(-\frac{2V_{o}sin\theta_{1}}{g})   (7)

Rewritting (7) and knowing sin(2\theta)=sen\theta cos\theta:

x=-\frac{V_{o}^{2}}{g} sin(2\theta_{1})   (8)

x=-\frac{(11.1 m/s)^{2}}{-9.8 m/s^{2}} sin(2(67\°))   (9)

x=9.043 m   (10)  This is the point at which snowball 1 hits and snowball 2 should hit, too.

With this in mind, we have to isolate t_{2} from (4) and substitute it on (3):

t_{2}=-\frac{2V_{o}sin\theta_{2}}{g}   (11)

x=V_{o}cos\theta_{2} (-\frac{2V_{o}sin\theta_{2}}{g})   (12)

Rewritting (12):

x=-\frac{V_{o}^{2}}{g} sin(2\theta_{2})   (13)

Finding \theta_{2}:

2\theta_{2}=sin^{-1}(\frac{-xg}{V_{o}^{2}})   (14)

2\theta_{2}=45.99\°  

\theta_{2}=22.99\° \approx 23\°  (15) This is the second angle at which snowball 2 must be thrown. Note this angle is lower than the first angle (\theta_{2} < \theta_{1}).

<h2>b) Time difference between both snowballs</h2>

Now we will find the value of t_{1} and t_{2} from (6) and (11), respectively:

t_{1}=-\frac{2V_{o}sin\theta_{1}}{g}  

t_{1}=-\frac{2(11.1 m/s)sin(67\°)}{-9.8m/s^{2}}   (16)

t_{1}=2.085 s   (17)

t_{2}=-\frac{2V_{o}sin\theta_{2}}{g}  

t_{2}=-\frac{2(11.1 m/s)sin(23\°)}{-9.8m/s^{2}}   (18)

t_{2}=0.885 s   (19)

Since snowball 1 was thrown before snowball 2, we have:

t_{1}-t=t_{2}   (20)

Finding the time difference t between both:

t=t_{1}-t_{2}   (21)

t=2.085 s - 0.885 s  

Finally:

t=1.199 s  

You might be interested in
A billiard ball travels 23 cm in the positive direction , hits the cushion and rebounds in the negative direction , and Finally
wel

Explanation :

Displacement refers to the distance between the final and the initial position. Hence the displacement of the ball will be the difference between the initial and the final displacement.

Let the initial position be 0.

Final position = 8 cm

So the difference between initial position and final position = 0 – 8 = - 8 cm.

So the billiard ball comes to rest 8.0 cm behind its orbital position.

4 0
3 years ago
If you dribble a basketball with a frequency of 1.77 Hz, how long does it take for you to complete 12 dribbles?
Licemer1 [7]
<h2>It takes 6.78 seconds to complete 12 dribbles.</h2>

Explanation:

Frequency of dribble = 1.77 Hz

That is

         Number of dribbles in 1 second = 1.77

         \texttt{Time taken for 1 dribble = }\frac{1}{1.77}=0.565s

Now we need to find how long does it take for you to complete 12 dribbles.

         Time taken for 12 dribbles = 12 x Time taken for 1 dribble

         Time taken for 12 dribbles = 12 x 0.565

         Time taken for 12 dribbles = 6.78 seconds      

It takes 6.78 seconds to complete 12 dribbles.  

8 0
3 years ago
A force of 15 newtons is used to push a box along the floor a distance of 3 meters. How much work was done?
jeka57 [31]

Answer:

<h3>The answer is 45 J</h3>

Explanation:

The work done by an object can be found by using the formula

<h3>workdone = force × distance</h3>

From the question

distance = 3 meters

force = 15 newtons

We have

workdone = 15 × 3

We have the final answer as

<h3>45 J</h3>

Hope this helps you

7 0
3 years ago
A carriage of 20 kg is pulled with a force of 35 N. How far the carriage will go
Gennadij [26K]

Answer:

2.71 m

Explanation:

Force is the product of mass and acceleration

F=m*a

Work done is the product of force and distance

Work done=F*d

In this case;

F= 35 N

Work done = 95 J

95 =35 * d

95 /35 = d

2.71 m= d

6 0
3 years ago
Two football players are pushing a 60 kg blocking sled across the field at a constant speed of 2.0 m/s. The coefficient of kinet
MArishka [77]

Answer:

The sled slides d=0.155 meters before rest.

Explanation:

m= 60 kg

V= 2 m/s

μ= 0.3

g= 9.8 m/s²

W= m * g

W= 588 N

Fr= μ* W

Fr= 176.4 N

∑F = m * a

a= (W+Fr)/m

a= 12.74m/s²

t= V/a

t= 0.156 s

d= V*t - a*t²/2

d= 0.155 m

7 0
3 years ago
Other questions:
  • What are Newton's formulas?
    13·1 answer
  • Why are bridges declared unsafe after a long use​
    14·1 answer
  • Scientists are investigating how well different microphones capture and record sounds. They use tools that show how loud the hig
    5·1 answer
  • What is proposed as evidence that supports the Big Bang Theory?
    15·2 answers
  • What is the maximum speed at which a car can safely travel around a circular track of radius 75.0 m if the coefficient of fricti
    14·1 answer
  • A vector quantity is : A deer running 15 meters per second due west
    13·1 answer
  • Tell me what the
    15·1 answer
  • Name the first Reserve Forest of India.<br><br><br> Pls tell this ans
    8·1 answer
  • 06
    14·1 answer
  • An object is moving in a straight line with a constant acceleration. Its position is measured at three different times, as shown
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!