1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dangina [55]
3 years ago
8

One strategy in a snowball fight is to throw

Physics
1 answer:
faltersainse [42]3 years ago
7 0

Answers:

a) \theta_{2}=23\°

b) t=1.199 s

Explanation:

This situation is a good example of the projectile motion or parabolic motion, in which the travel of the snowball has two components: <u>x-component</u> and <u>y-component</u>. Being their main equations as follows for both snowballs:

<h3><u>Snowball 1:</u></h3>

<u>x-component: </u>

x=V_{o}cos\theta_{1} t_{1}   (1)

Where:

V_{o}=11.1 m/s is the initial speed  of snowball 1 (and snowball 2, as well)

\theta_{1}=67\° is the angle for snowball 1

t_{1} is the time since the snowball 1 is thrown until it hits the opponent

<u>y-component: </u>

y=y_{o}+V_{o}sin\theta_{1} t_{1}+\frac{gt_{1}^{2}}{2}   (2)

Where:

y_{o}=0  is the initial height of the snowball 1 (assuming that both people are only on the x axis of the frame of reference, therefore the value of the position in the y-component is zero.)

y=0  is the final height of the  snowball 1

g=-9.8m/s^{2}  is the acceleration due gravity (always directed downwards)

<h3><u>Snowball 2:</u></h3>

<u>x-component: </u>

x=V_{o}cos\theta_{2} t_{2}   (3)

Where:

\theta_{2} is the angle for snowball 2

t_{2} is the time since the snowball 2 is thrown until it hits the opponent

<u>y-component: </u>

y=y_{o}+V_{o}sin\theta_{2} t_{2}+\frac{gt_{2}^{2}}{2}   (4)

Having this clear, let's begin with the answers:

<h2>a) Angle for snowball 2</h2>

Firstly, we have to isolate t_{1} from (2):

0=0+V_{o}sin\theta_{1} t_{1}+\frac{gt_{1}^{2}}{2}   (5)

t_{1}=-\frac{2V_{o}sin\theta_{1}}{g}   (6)

Substituting (6) in (1):

x=V_{o}cos\theta_{1}(-\frac{2V_{o}sin\theta_{1}}{g})   (7)

Rewritting (7) and knowing sin(2\theta)=sen\theta cos\theta:

x=-\frac{V_{o}^{2}}{g} sin(2\theta_{1})   (8)

x=-\frac{(11.1 m/s)^{2}}{-9.8 m/s^{2}} sin(2(67\°))   (9)

x=9.043 m   (10)  This is the point at which snowball 1 hits and snowball 2 should hit, too.

With this in mind, we have to isolate t_{2} from (4) and substitute it on (3):

t_{2}=-\frac{2V_{o}sin\theta_{2}}{g}   (11)

x=V_{o}cos\theta_{2} (-\frac{2V_{o}sin\theta_{2}}{g})   (12)

Rewritting (12):

x=-\frac{V_{o}^{2}}{g} sin(2\theta_{2})   (13)

Finding \theta_{2}:

2\theta_{2}=sin^{-1}(\frac{-xg}{V_{o}^{2}})   (14)

2\theta_{2}=45.99\°  

\theta_{2}=22.99\° \approx 23\°  (15) This is the second angle at which snowball 2 must be thrown. Note this angle is lower than the first angle (\theta_{2} < \theta_{1}).

<h2>b) Time difference between both snowballs</h2>

Now we will find the value of t_{1} and t_{2} from (6) and (11), respectively:

t_{1}=-\frac{2V_{o}sin\theta_{1}}{g}  

t_{1}=-\frac{2(11.1 m/s)sin(67\°)}{-9.8m/s^{2}}   (16)

t_{1}=2.085 s   (17)

t_{2}=-\frac{2V_{o}sin\theta_{2}}{g}  

t_{2}=-\frac{2(11.1 m/s)sin(23\°)}{-9.8m/s^{2}}   (18)

t_{2}=0.885 s   (19)

Since snowball 1 was thrown before snowball 2, we have:

t_{1}-t=t_{2}   (20)

Finding the time difference t between both:

t=t_{1}-t_{2}   (21)

t=2.085 s - 0.885 s  

Finally:

t=1.199 s  

You might be interested in
if you crash your car how could you decrease the damage to you or the car using the concept of impulse
kotykmax [81]

Explanation:

Crumple zones are sections in cars that are designed to crumple up when the car encounters a collision. Crumple zones minimize the effect of the force in an automobile collision in two ways. By crumpling, the car is less likely to rebound upon impact, thus minimizing the momentum change and the impulse.

3 0
3 years ago
The process of heat radiation is the ONLY method of heat transfer that can occur
lina2011 [118]
Radiation emitted by a body is a consequence of thermal agitation of its composing molecules. so...<span> electromagnetic waves ?</span>
5 0
4 years ago
Read 2 more answers
A 58 g firecracker is at rest at the origin when it explodes into three pieces. The first, with mass 12 g , moves along the x ax
alexdok [17]

Answer:

Explanation:

We shall apply conservation of momentum law in vector form to solve the problem .

Initial momentum = 0

momentum of 12 g piece

= .012 x 37 i since it moves along x axis .

= .444 i

momentum of 22 g

= .022 x 34 j

= .748 j

Let momentum of third piece = p

total momentum

= p + .444 i + .748 j

so

applying conservation law of momentum

p + .444 i + .748 j  = 0

p = - .444 i -  .748 j  

magnitude of p

= √ ( .444² + .748² )

= .87 kg m /s

mass of third piece = 58 - ( 12 + 22 )

= 24 g = .024 kg

if v be its velocity

.024 v = .87

v = 36.25 m / s .

6 0
3 years ago
A student rides her bike to school. Her school is 5 miles from home. She travels at an average rate of 15 miles per hour. How mu
Elden [556K]

Answer:

.3 repeating hours

Explanation:

3 0
2 years ago
How would you find the total energy stored in the
likoan [24]

Answer:

The energy of the capacitors connected in parallel is 0.27 J

Given:

C = 2.0\micro F = 2.0\times 10^{- 6} F

C' = 4.0\micro F = 4.0\times 10^{- 6} F

Potential difference, V = 300 V

Solution:

Now, we know that the equivalent capacitance of the two parallel connected capacitors is given by:

C_{eq} = C + C' = 2.0 + 4.0 = 6.0\micro F = 6.0\times 10^{- 6} F

The energy of the capacitor, E is given by;

E = \frac{1}{2}C_{eq}V^{2}

E = \frac{1}{2}\times 6.0\times 10^{- 6}\times 300^{2} = 0.27 J

6 0
3 years ago
Other questions:
  • Marus traveled on a motorcylce distance of 1,298meters north to get to the nearest shopping center. He then turned back south an
    7·1 answer
  • A resistor is connected in series with a power supply of 23.90 V. The current measure is 0.60 A. What is the resistance (in Ω) o
    15·1 answer
  • If a train is going 60 m/s hits the brakes, and it takes the train 1 minute 25 seconds to stop, what is the train’s acceleration
    12·1 answer
  • The purpose of the fraud fighter/ black light machine is to:
    5·1 answer
  • What would be the volume of a liquid that has a density of 1.2 g/mL and a mass of 24 grams
    15·1 answer
  • Write the letters of the correct answers on the lines at left.
    14·1 answer
  • A standing wave of the third harmonic is induced in a stopped pipe of length 1.2 m. The speed of sound through the air of the pi
    13·1 answer
  • 3
    14·1 answer
  • What method could I use to test this hypothesis? If the mass and the volume of and object are known, then its density can be cal
    7·1 answer
  • Please help thanks :)
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!