The law applied here is Hooke's Law which describes the force exerted by the spring with a given distance. The equation for this is F = kΔx, where F is the force in Newtons, k is the spring constant in N/m while Δx is the displacement in meters.
If you want to find work done by a spring, this can be solved by using differential equations. However, derived equations are already ready for use. The equation is
W = k[{x₂-x₁)² - (x₁-xn)²],
where
xn is the natural length
x₁ is the stretched length
x₂ is also the stretched length when stretched even further than x₁
In this case xn =x₁. So, that means that (x₁-xn) = 0 and (x₂-x₁) = 11 cm or 0.11 m.
Then, substituting the values,
2 J = k (0.11² -0²)
k = 165.29 N/m
Finally, we use the value of k to the Hooke's Law to determine the Force.
F = kΔx = (165.29 N/m)(0.11 m)
F = 18.18 Newtons
Answer:
SO ANSWER AGRE AS FOLLOWS:
Explanation:
A. Wind is the movement of air, caused by the uneven heating of the Earth by the sun and the Earth's own rotation. Winds range from light breezes to natural hazards such as hurricanes and tornadoes.
B.At night, the roles reverse. The air over the ocean is now warmer than the air over the land. The land loses heat quickly after the sun goes down and the air above it cools too. ... This causes the low surface pressure to shift to over the ocean during the night and the high surface pressure to move over the land.
<h2>
<em><u>HOPE THIS IS CORRECT </u></em></h2>
Answer:
Explanation:
We shall solve this question with the help of Ampere's circuital law.
Ampere's ,law
∫ B dl = μ₀ I , B is magnetic field at distance x from the axis within wire
we shall find magnetic field at distance x . current enclosed in the area of circle of radius x
= I x π x² / π R²
= I x² / R²
B x 2π x = μ₀ x current enclosed
B x 2π x = μ₀ x I x² / R²
B = μ₀ I x / 2π R²
Maximum magnetic B₀ field will be when x = R
B₀ = μ₀I / 2π R
Given
B = B₀ / 3
μ₀ I x / 2π R² = μ₀I / 2π R x 3
x = R / 3
b ) The largest value of magnetic field is on the surface of wire
B₀ = μ₀I / 2π R
At distance x outside , let magnetic field be B
Applying Ampere's circuital law
∫ B dl = μ₀ I
B x 2π x = μ₀ I
B = μ₀ I / 2π x
Given B = B₀ / 3
μ₀ I / 2π x = μ₀I / 2π R x 3
x = 3R .
Answer:
The value is 
Explanation:
From the question we are told that
The mass of the bullet is 
The mass of the wood is 
The height attained by the combined mass is 
Generally according to the law of energy conservation

Here
is the kinetic energy of the bullet before collision.
and
is the potential energy of the combined mass of bullet and wood at the height h which is mathematically represented as
![PE_m = [m_b + m_w] * g * h](https://tex.z-dn.net/?f=PE_m%20%20%3D%20%20%5Bm_b%20%20%2B%20m_w%5D%20%2A%20%20g%20%2A%20%20h)
So
![KE_b =PE_c = [0.005 + 0.90] * 9.8 *0.08](https://tex.z-dn.net/?f=KE_b%20%3DPE_c%20%20%20%3D%20%5B0.005%20%20%2B%200.90%5D%20%2A%209.8%20%2A0.08)
=> 
Balanced forces do not cause a change in motion. When balanced forces act on an object at rest, the object will not move. If you push against a wall, the wall pushes back with an equal