(a) The object moves with uniform velocity from A to B.
(b) The object moves with constant velocity from B to C.
(c) The object moves with increasing velocity from C to D.
<h3>
Velocity of the object from point A to B</h3>
V(A to B) = (6 - 0)/(4 - 0) = 1.5 m/s
<h3>
Velocity of the object from point B to C</h3>
V(B to C) = (6 - 6)/(11 - 4) = 0 m/s
<h3>
Velocity of the object from point C to D</h3>
V(C to D) = (7 - 6)/(12 - 11) = 1 m/s
final velocity = 1 + 1.5 m/s = 2.5 m/s
Thus, we can conclude the following;
The object moves with uniform velocity from A to B.
The object moves with constant velocity from B to C.
The object moves with increasing velocity from C to D.
Learn more about velocity here: brainly.com/question/6504879
#SPJ1
Answer:
he fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true
Explanation:
Let's pose the solution of this problem, to be able to analyze the firm affirmations.
When the person is falling, the weight acts on them all the time, initially the rope has no force, but at the moment it begins to lash it exerts a force towards the top that is proportional to the lengthening of the rope.
The equation for this part is
Fe - W = m a
k x - mg = m a
As the axis of rotation is located at the top where they jump, there is a torque.
What is it
Fe y - W y = I α
angular and linear acceleration are related
a = α r
Fe y - W y = I a / r
In the fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true
Answer:
both
Explanation:
because when it is hot in summer 5hat is the air and the sund u can warm things up and then it get hot
Answer:
<h2>The amount of torque put on the car is 33,000Nm</h2>
Explanation:
Formula for calculating torque is expressed as T = rFsin
where;
r is the radius of the of the arm of the jack = 3m
F is the force exerted = 11000
is the angle of rotation = 90°
On substituting;
