ANSWER: NATURE
EXPLAINTION:
The Pacific is loosely shaped like a triangle, opening widely to the south but barely at all to the north, while the Atlantic is shaped like an hourglass with the choke point located very loosely at the equator (somewhat south of it in the west).
Answer:
a
The x- and y-components of the total force exerted is

b
The magnitude of the force is

The direction of the force is
Clockwise from x-axis
Explanation:
From the question we are told that
The magnitude of the first charge is 
The magnitude of the second charge is 
The position of the second charge from the first one is 
The magnitude of the third charge is 
The position of the third charge from the first one is 


The position of the third charge from the second one is



The force acting on the third charge due to the first and second charge is mathematically represented as

Substituting values



The magnitude of
is mathematically evaluated as

The direction is obtained as

![\theta = tan ^{-1} [-0.63889]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20tan%20%5E%7B-1%7D%20%5B-0.63889%5D)



Answer:
Speed = 0.00392 m/s
Explanation:
Solution:
Frequency of the radio = 85 MHz
If we have the frequency, we can calculate the wavelength of the radio wave.
As we know,
Frequency = speed of light/wavelength
wavelength = c/f
c = speed of light = 3 x
m/s
So,
Wavelength = 3 x
m/s / 85 x
Hz
Wavelength = 3.5294 m
Man gets disturbed reception at t = 15 min
t = 15 x 60 = 900 s
t = 900 s
Speed = distance/time
Here, distance is wavelength. So,
Speed = 3.5294 m / 900 s
Speed = 0.00392 m/s
Hence, the man's car is going with speed of 0.00392 m/s
yes. gravity is working on you and everything on you.
also earth is rotating
no not in respect ofimmediate surroundings
object could move at constant velocity = no change in either magnitude or direction
change of position "proves" this