Answer:
8100W
Explanation:
Let g = 10m/s2
As water is falling from 60m high, its potential energy from 60m high would convert to power. So the rate of change in potential energy is
or 9000W
Since 10% of this is lost to friction, we take the remaining 90 %
P = 9000*90% = 8100 W
Answer:
Velocity is 2.17 m/s at an angle of 9.03° above X-axis.
Explanation:
Mass of object 1 , m₁ = 300 g = 0.3 kg
Mass of object 2 , m₂ = 400 g = 0.4 kg
Initial velocity of object 1 , v₁ = 5.00i-3.20j m/s
Initial velocity of object 2 , v₂ = 3.00j m/s
Mass of composite = 0.7 kg
We need to find final velocity of composite.
Here momentum is conserved.
Initial momentum = Final momentum
Initial momentum = 0.3 x (5.00i-3.20j) + 0.4 x 3.00j = 1.5 i + 0.24 j kgm/s
Final momentum = 0.7 x v = 0.7v kgm/s
Comparing
1.5 i + 0.24 j = 0.7v
v = 2.14 i + 0.34 j
Magnitude of velocity

Direction,

Velocity is 2.17 m/s at an angle of 9.03° above X-axis.
When the heat source is removed from a fluid, convection currents in the fluid will eventually distribute heat uniformly throughout the fluid. When all of the fluid is at the same temperature, convection currents will stop.
Answer:
B)
Explanation:
The value the scale shows is the reaction force to the normal force (they are equal by Newton's 3rd Law) that the scale exerts on Eric.
The forces on Eric are his weight (downward) and this normal force (upward), so we can write the net force over him as (also using Newton's 2nd Law):

which means

and for our values this is:

Firstly, we must find the equation the speed, it can be obtained by the derivative of x =<span>x = 4.0t2 - 32t + 36, it means v= 8.0t-32. the particule stops means v= 0, and 0= 8.0t-32, which implies 8t=32, so t=4s, and then x(t=4) = 4.0(4)^2 - 32(4) + 36= - 28m
so x = - 28 m</span>