C. Melting ice.
It is C because melting ice is a change of state from solid to liquid which requires an addition of energy(or entropy) into the system.
Condensation of water occurs from a gas to a liquid state, which takes energy out of the system(water) and gives it to the surroundings(air around it). Freezing water is the same as condensation except for the state change. Deposition is simply gas to a solid instantaneously so you can again see it as with the other two examples.
Answer:
Molar mass = 151.9 g/mol
Explanation:
The molar mass of a compound is obtained by adding u the individual atomic masses in the compound. The unit is g/mol.
In FeSO4, we have one Fe, one S and 4 O.
The atomic masses are given as follows;
Fe = 55.845 u
S = 32.065 u
O = 15.999 u
Molar mass = ( 1 * Fe) + (1 * S) + (4 * O)
Molar mass = (1 * 55.854 ) + ( 1 * 32.065) + (4 * 15.999)
Molar mass = 151.915 g/mol
In four significant figures;
Molar mass = 151.9 g/mol
Increase in Oxygen shift the equilibrium towards reactant side.
<u>Explanation:</u>
6CO₂ + 6H₂O ⇄ C₆H₁₂O₆ + 6O₂
This is the reaction occurs in the photosynthesis of plants by means of sunlight. In this case, if the concentration of Oxygen increases or adding more oxygen to the product side will shift the equilibrium towards the reactant side according to the Le Chatlier's principle, which adjusts the equilibrium by itself for any changes that is increase or decrease in pressure, temperature or concentration of reactants or products.
Answer:
3,29L
Explanation:
3.29L = V2
Formula: V1/T1 = V2/T2
--------------------
Given:
V1 = 3.0 L V2 = ?
T1 = 310 K T2 = 340 K
--------------------
Plugin:
(X stands in place of V2 just to make it easier to look at)
[3.0L / 310K = X / 340K]
(3.0L / 310K = 0.01L/K)
0.01L/K = X / 340K
(multiply 340K on both sides, it cancels out on the right)
0.01L/K * 340K = X
(0.01L/K * 340K = 3.29L)
**3.29L = X**
[or]
**3.29L = V2**