The group on the periodic table that would have 0 electronegativity due to the fact that their valence shell is full, i.e, have a full octet would be the inert or noble gases. They have a total of 8 electrons in their valence shell and are thus inert and cannot strongly attract electrons toward itself, from neighbouring atom electrons as it does not need to.
The balanced chemical reaction is:
<span>2H2+O2-->2H2O
</span>
To determine the mass of hydrogen that is needed, we need use the initial amount of oxygen and relate it to hydrogen from the reaction given. We do as follows:
192 g O2 ( 1 mol O2 / 32 g O2) ( 2 mol H2 / 1 mol O2 ) ( 2.02 g H2 / 1 mol H2 ) = 24.24 g H2
The answer is 300
3 * 100
3 * 10 * 10
30 * 10
300
Hope this helps. If it did, consider making it Brainliest!
Answer:
- <u><em>1.7 × 10³ kg of ore.</em></u>
Explanation:
Call X the amount of aluminum ore mined to produce 1.0 × 10³ kg the aluminum metal.
Then, taking into account the yield of the reaction (82 % = 0.82) and the percent of aluminun in the ore (71% = 0.71), you can write the following equation:
- X × 71% × 82% = 1.0 × 10³ kg
↑ ↑ ↑ ↑
(mass of ore) (% of Al in the ore) (yield) ( Al metal to obtain)
You must just simplify, solve and compute:
- X = 1,000 / (0.71 × 0.82) = 1,000 / 0.5822 = 1,717.6 Kg
Round to two significant figures; 1,700 kg = 1.7 × 10³ kg of ore ← answer.
Answer:
B) Symmetrical and nonpolar
Step-by-step explanation:
The formula is H-C≡C-H.
Each C atom has <em>two</em> electron regions, so VSEPR theory predicts a <em>linear molecular geometry</em> (see image below).
The molecule is symmetrical, because the green line divides the molecule into two halves that are mirror images of each other.
The C-H bonds are slightly polar, because C is more electronegative than H (µ ≈ 0.4 D).
The C atoms are partially negative (red), while the H atoms are partially positive (blue).
However, the two C-H bond dipoles point in <em>opposite directions</em>, so they cancel each other. The molecule has <em>no net dipole moment.</em>
Acetylene is nonpolar.