Answer: 2.068*
m
Explanation: According to work energy-theorem , the workdone in accelerating the electron equals the energy it would give off in terms of light.
workdone= qV
energy = hc/λ
q=magnitude of an electronic charge= 1.602*
h= planck constant = 6.626*
c= speed of light =2.998* 
v= potential difference= 6*
λ= wavelength=unknown
by making λ subject of formulae we have that
λ= 
λ = 6.626*
* 2.998*
/ 1.602*
* 6*
λ = 
by doing the necessary calculations, we have that
λ = 2.068*
m
C, planets orbit around the sun because of gravity
Graph B represents the velocity of the sphere changes over time when falling with constant acceleration.
- Acceleration is the measure of how quickly a body's velocity varies with regard to time, and constant acceleration occurs when a body's velocity changes proportionately over a period of time, or at a constant rate. It measures in m/s2.
- It is claimed that a body has continual positive acceleration when it begins to move with an initial velocity of zero and gradually increases to a positive value over time.
- Constant positive acceleration is demonstrated by a ball falling freely in a vertical direction.
To know more about constant acceleration. visit : brainly.com/question/9754169
#SPJ1
-- There's a force of 240N pushing her backwards.
-- She's maintaining a steady speed (of 2.5 m/s) .
-- In order to maintain a steady speed (no acceleration),
the forces on her must be balanced. So she's maintaining
a steady force of 240N forward.
-- Every time she moves 1 m forward, she does work of
(force) x (distance) = 240 joules.
-- She moves 2.5 meters forward every second.
So she's doing (240 x 2.5) = 600 joules of work every second.
-- 600 joules per second = 600 watts .
The lens' focal length is 1.5 cm, and its focal length is equal to half its radius of curvature, as shown by the formula f=R2 f = R 2, where f seems to be the focal length as well as R is indeed the radius of curvature.
<h3>What does focal length mean?</h3>
When a lens is focussed at infinity, the focal length of the lens is discovered. We can determine the angle of view, or the amount of the scene will be caught, and the magnification, or how big the individual elements will be, by measuring the focal length of the lens. A narrower field of view and a higher magnification result from a longer focal length.
<h3>How do focal length or wavelength work?</h3>
As wavelength and refractive index are inversely connected, the focal length of a lens varies inversely with each of them. The focal length of a lens varies directly with wavelength of light employed. The main reason chromatic aberration occurs is due to this. No relationship exists between the focal length and the frequency of a light.
To know more about focal length visit:
brainly.com/question/16188698
#SPJ4