Answer
when there are ten they don't grow so well but when there is less than 10 they tend to grow
Answer:
E = 31.329 N/C.
Explanation:
The differential electric field
at the center of curvature of the arc is
<em>(we have a cosine because vertical components cancel, leaving only horizontal cosine components of E. )</em>
where
is the radius of curvature.
Now
,
where
is the charge per unit length, and it has the value

Thus, the electric field at the center of the curvature of the arc is:


Now, we find
and
. To do this we ask ourselves what fraction is the arc length 3.0 of the circumference of the circle:

and this is
radians.
Therefore,

evaluating the integral, and putting in the numerical values we get:


Answer:
Explanation:
You can approach an expression for the instantaneous velocity at any point on the path by taking the limit as the time interval gets smaller and smaller. Such a limiting process is called a derivative and the instantaneous velocity can be defined as.#3
For the special case of straight line motion in the x direction, the average velocity takes the form: If the beginning and ending velocities for this motion are known, and the acceleration is constant, the average velocity can also be expressed as For this special case, these expressions give the same result. Example for non-constant acceleration#1
Answer:
answer is C. 10 g
Explanation:
: When an object floats, it displaces an amount of water that has the same mass as itself. Therefore, the mass of the water in the graduated cylinder is equal to the mass of the object. We can see that there are 10 mL of water in the graduated cylinder. We also know that the density of water is 1 g/mL. Since each mL of water has a mass of 1 g, then 10 mL of water has a mass of 10 g. If the mass of the displaced water is 10 g, then the mass of the floating object is also 10 g.
I think it's surface tension force