Answer:
It will take Andy 1.198minutes to mow the lawn and it will take Brian 1,209.98minutes to mow the same lawn.
Step-by-step explanation:
Using the simultaneous equation concept, let A denote Andy and B be Brian
Andy and Brian can mow the lawn for 1212minutes i.e A+B = 1212..eqn 1
If Brian would mow the lawn by himself in 1010 minutes more than it would take Andy, this means B=1010A...eqn 2.
Substituting eqn 2 into eqn 1
Equation 1 becomes
A+1010A=1212
1011A=1212
A=1212/1011
A=1.198
B = 1010×1.198
B=1,209.98
Therefore, It will take Andy 1.198minutes to mow the lawn and it will take Brian 1,209.98minutes to mow the same lawn.
Answer:
a) current in the second wire is 5.60A
b) opposite directions
Explanation:
a) We need to find the current of wire, the magnitude of the force per unit length between the two wires carrying current I and I¹ is given by


b) knowing that for a two parallel conductor carrying current in the same direction attracts each other, and for a two parallel conductors carrying carying current in opposite direction repels eachother.
therefore, since the two wire repel each other then the current in the second wire must flow in the opposite direction of the current in the first wire.
Answer:
2.93 m (which agrees with answer "C" on the list)
Explanation:
Recall that the speed of the wave equals the product of the wave's length times its frequency. Therefore, the wavelength is going to be the quotient of the speed of the signal divided its frequency:
Wavelength = 2.997 10^8 / 1.023 10^8 = 2.93 m
1. The problem statement, all variables and given/known data Knowing that snow is discharged at an angle of 40 degrees, determine the initial speed, v0 of the snow at A. Answer: 6.98 m/s 2. Relevant equations 3. The attempt at a solution I have found the x and y velocity and position formulas. Now since I don't know time, should I solve both position equations for time (t) and set them equal to each other to get my only unknown, vi? The quadratic equation for time in the y-dir seems a bit hectic. Is there an easier way to go about trying to find vi?
Answer: Elastic Potential Energy
Explanation: Energy present on compressed strings is called Elastic Potential Energy.