1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natali 33 [55]
3 years ago
5

A circus acrobat is shot out of a cannon with an initial upward speed of 34 ft/s. if the acrobat leaves the cannon 4 ft above th

e ground, how long will it take him to reach a net that is 8 ft above the ground
Physics
1 answer:
jok3333 [9.3K]3 years ago
6 0
<h2>It will take 0.125 seconds to reach the net.</h2>

Explanation:

Initial speed, u = 34 ft/s = 10.36 m/s

Acceleration, a = -9.81 m/s²

Displacement, s = Final height - Initial height = 8 - 4 = 4 ft = 1.22 m

We have equation of motion, s = ut + 0.5 at²

Substituting

              s = ut + 0.5 at²

              1.22 = 10.36 x t + 0.5 x -9.81 x t²

              4.905t² - 10.36 t + 1.22 = 0

              t = 1.99 s     or    t = 0.125 seconds

Minimum time is 0.125 seconds.

It will take 0.125 seconds to reach the net.

You might be interested in
A proton is projected toward a fixed nucleus of charge Ze with velocity vo. Initially the two particles are very far apart. When
11111nata11111 [884]

Answer:

The value is R_f =  \frac{4}{5}  R

Explanation:

From the question we are told that

   The  initial velocity of the  proton is v_o

    At a distance R from the nucleus the velocity is  v_1 =  \frac{1}{2}  v_o

    The  velocity considered is  v_2 =  \frac{1}{4}  v_o

Generally considering from initial position to a position of  distance R  from the nucleus

 Generally from the law of energy conservation we have that  

       \Delta  K  =  \Delta P

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

      \Delta K  =  K__{R}} -  K_i

=>    \Delta K  =  \frac{1}{2}  *  m  *  v_1^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * (\frac{1}{2} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

          \Delta P =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P =  k  *  \frac{q_1 * q_2 }{R}  - 0

So

           \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R}  - 0

=>        \frac{1}{2}  *  m  *v_0^2 [ \frac{1}{4} -1 ]  =   k  *  \frac{q_1 * q_2 }{R}

=>        - \frac{3}{8}  *  m  *v_0^2  =   k  *  \frac{q_1 * q_2 }{R} ---(1 )

Generally considering from initial position to a position of  distance R_f  from the nucleus

Here R_f represented the distance of the proton from the nucleus where the velocity is  \frac{1}{4} v_o

     Generally from the law of energy conservation we have that  

       \Delta  K_f  =  \Delta P_f

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus  , this is mathematically represented as

      \Delta K_f   =  K_f -  K_i

=>    \Delta K_f  =  \frac{1}{2}  *  m  *  v_2^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * (\frac{1}{4} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * \frac{1}{16} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R_f  from the nucleus , this is mathematically represented as

          \Delta P_f  =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P_f  =  k  *  \frac{q_1 * q_2 }{R_f }  - 0      

So

          \frac{1}{2}  *  m  * \frac{1}{8} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f }

=>        \frac{1}{2}  *  m  *v_o^2 [-\frac{15}{16} ]  =   k  *  \frac{q_1 * q_2 }{R_f }

=>        - \frac{15}{32}  *  m  *v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f } ---(2)

Divide equation 2  by equation 1

              \frac{- \frac{15}{32}  *  m  *v_o^2 }{- \frac{3}{8}  *  m  *v_0^2  } }   =  \frac{k  *  \frac{q_1 * q_2 }{R_f } }{k  *  \frac{q_1 * q_2 }{R } }}

=>           -\frac{15}{32 } *  -\frac{8}{3}   =  \frac{R}{R_f}

=>           \frac{5}{4}  =  \frac{R}{R_f}

=>             R_f =  \frac{4}{5}  R

   

7 0
3 years ago
A specimen of steel has a rectangular cross section 20 mm wide and 40 mm thick, an elastic modulus of 207 GPa, and a Poisson’s r
katrin2010 [14]

Answer:

There's a decrease in width of 2.18 × 10^(-6) m

Explanation:

We are given;

Shear Modulus;E = 207 GPa = 207 × 10^(9) N/m²

Force;F = 60000 N.

Poisson’s ratio; υ =0.30

We are told width is 20 mm and thickness 40 mm.

Thus;

Area = 20 × 10^(-3) × 40 × 10^(-3)

Area = 8 × 10^(-4) m²

Now formula for shear modulus is;

E = σ/ε_z

Where σ is stress given by the formula Force(F)/Area(A)

While ε_z is longitudinal strain.

Thus;

E = (F/A)/ε_z

ε_z = (F/A)/E

ε_z = (60,000/(8 × 10^(-4)))/(207 × 10^(9))

ε_z = 3.62 × 10^(-4)

Now, formula for lateral strain is;

ε_x = - υ × ε_z

ε_x = -0.3 × 3.62 × 10^(-4)

ε_x = -1.09 × 10^(-4)

Now, change in width is given by;

Δw = w_o × ε_x

Where w_o is initial width = 20 × 10^(-3) m

So; Δw = 20 × 10^(-3) × -1.09 × 10^(-4)

Δw = -2.18 × 10^(-6) m

Negative means the width decreased.

So there's a decrease in width of 2.18 × 10^(-6) m

6 0
3 years ago
Pls answer 50 points for an answer!!!!
lyudmila [28]

ummmn hi i dont know lol

5 0
3 years ago
How are electromagnetic waves different from all other waves
Verdich [7]

Answer:

Electromagnetic waves differ from mechanical waves in that they do not require a medium to propagate. This means that electromagnetic waves can travel not only through air and solid materials, but also through the vacuum of space.

Explanation:

6 0
4 years ago
Witch of the following questoons would you expect to see on an interest inventory
Roman55 [17]

Answer: Do you like science experiments ? 1)

Would You enjoy reading a fashion magazine? 2)

Explanation:

3 0
3 years ago
Other questions:
  • Action and reaction force always cancel each other. <br><br> True or False.
    11·1 answer
  • A gas is collected from a radioactive material; upon inspection, the gas is identified as helium. the presence of the helium ind
    8·1 answer
  • Whats the origin of all stars?<br> a) supernova<br> b) dwarfs<br> c) protostars<br> d) nebulae
    7·2 answers
  • The gravitational force acting on a lead ball is much larger than that acting on a wooden ball of the same size. Which statement
    8·1 answer
  • An object of height 2.2 cm is placed 5.1 cm in front of a diverging lens of focal length 19 cm and is observed through the lens
    6·1 answer
  • 80 km por hora em metros por segundo
    15·1 answer
  • Halogen is most likely to react to what
    12·1 answer
  • What would a force diagram for something WHILE it is being thrown DOWNWARDS look like? <br><br> Ty
    14·1 answer
  • 7. 13 a turbine receives steam at 6 mpa, 600°c with an exit pressure of 600 kpa. Assume the turbine is adiabatic and neglect kin
    13·1 answer
  • Tennis balls experience a large drag force. A tennis ball is hit so that it goes up and then comes back straight down.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!