<span>By studying fossils, scientists get an idea of what the organisms looked like, what they ate, and how they lived. </span>
Word count and just reall simple stuff u can just get the real version on the computer
Answer:
Using the formula cards again, add the coefficient of 2 in front of the formula and have them recalculate the number of each element and the total number of atoms in each element.
Explanation:
Answer:
1223.38 mmHg
Explanation:
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 
Also,
Moles = mass (m) / Molar mass (M)
Density (d) = Mass (m) / Volume (V)
So, the ideal gas equation can be written as:

Given that:-
d = 1.80 g/L
Temperature = 32 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (32 + 273.15) K = 305.15 K
Molar mass of nitrogen gas = 28 g/mol
Applying the equation as:
P × 28 g/mol = 1.80 g/L × 62.3637 L.mmHg/K.mol × 305.15 K
⇒P = 1223.38 mmHg
<u>1223.38 mmHg must be the pressure of the nitrogen gas.</u>
There are 1.078 x 10²³ molecules
<h3>Further explanation</h3>
Given
4 dm³ = 4 L Nitrogen gas
Required
Number of molecules
Solution
Assumptions on STP (1 atm, 273 K), 1 mol gas = 22.4 L, so for 4 L :
mol = 4 : 22.4
mol = 0.179
1 mol = 6.02 x 10²³ particles(molecules, atoms)
For 0.179 :
= 0.179 x 6.02 x 10²³
= 1.078 x 10²³