1.7 Btu
1 watt = 3.41214 Btu/h
1watt * 1h = 3.41214 Btu/h * h
1 = 3.41214 Btu/ (watt*h)/
0.5 watt * h = 0.5 watt*h * 3.41214 Btu/(watt*h) = 1.706 Btu
Explanation:
As per Rayleigh criterion, the angular resolution is given as follows:

From this expression larger the size of aperture, smaller will be the value of angular resolution and hence, better will be the device i.e. precision for distinguishing two points at very high angular difference is higher.
Answer:
(a) 1.414 km
(b) 1.06 m/s
Explanation:
(a) For John:
Distance = 1 km north and then 1 km east
Speed = 1.5 m/s
total distance traveled = 1 + 1 = 2 km = 2000 m
Time taken to travel = Distance / speed
t = 2000 / 1.5 = 1333.3 seconds
Displacement =
(b) For jane :
Time is same as john = 1333.33 second
Distance = 1.414 km = 1414 m
Speed = distance / time = 1414 / 1333.33 = 1.06 m/s
<h3><u>Answer</u>;</h3>
≈ 5 Kgm²/sec
<h3><u>Explanation</u>;</h3>
Angular momentum is given by the formula
L = Iω, where I is the moment of inertia and ω is the angular speed.
I = mr², where m is the mass and r is the radius
= 0.65 × 0.7²
= 0.3185
Angular speed, ω = v/r
= (2 × 3.142 × r × 2.5) r
= 15.71
Therefore;
Angular momentum = Iω
= 0.3185 × 15.71
= 5.003635
<u>≈ 5 Kgm²/sec</u>
Answer:
A.) 3605.6 N
B.) 33.7 degree
Explanation:
To find the result force acting on the wing of the airplane, we need to resolve the forces into x and y components
Resolving into x component :
Sum of forces = 3500 - 500 = 3000N
Resolving into y component:
Sum of forces = 2000N
Resultant force Fr = sqrt ( Fx^2 + Fy^2)
Fr = sqrt ( 3000^2 + 2000^2 )
Fr = sqrt ( 9000000 + 4000000 )
Fr = sqrt ( 13000000)
Fr = 3605.6 N
Therefore, resultant force acting on the wing is 3605.6 N
The direction of the vector will be:
Tan Ø = Fy / Fx
Substitute Fx and Fy into the formula
Tan Ø = 2000 / 3000
Tan Ø = 0.66666
Ø = tan^-1(0. 66666)
Ø = 33.7 degree.