The balanced equation that illustrates the reaction is:
2C4H6 + 11O2 ......> 8CO2 + 6H2O
number of moles = mass / molar mass
number of moles of oxygen = 2.1 / 32 = 0.065625 moles
Now, from the balanced equation, we can note that:
11 moles of oxygen are required to produce 6 moles of water.
Therefore:
0.065625 moles of oxygen will produce:
(0.065625*6) / 11 = 0.03579 moles of water
number of moles = mass / molar mass
mass = number of moles * molar mass
mass of water = 0.03579 * 18 = 0.644 grams
Answer:
Brackett Series (n = 4)
Explanation:
The least energetic line of Hydrogen atom lies in <em>Brackett Series </em>when n = 4 because these are least energetic, have longer wavelengths and lies in Infrared region of spectrum. No traces of <em>Pfund series </em>are formed by H=atoms.
Answer:
Kc = 1.09x10⁻⁴
Explanation:
<em>HF = 1.62g</em>
<em>H₂O = 516g</em>
<em>F⁻ = 0.163g</em>
<em>H₃O⁺ = 0.110g</em>
<em />
To solve this question we need to find the moles of each reactant in order to solve the molar concentration of each reactan and replacing in the Kc expression. For the reaction, the Kc is:
Kc = [H₃O⁺] [F⁻] / [HF]
<em>Because Kc is defined as the ratio between concentrations of products over reactants powered to its reaction coefficient. Pure liquids as water are not taken into account in Kc expression:</em>
<em />
[H₃O⁺] = 0.110g * (1mol /19.01g) = 0.00579moles / 5.6L = 1.03x10⁻³M
[F⁻] = 0.163g * (1mol /19.0g) = 0.00858moles / 5.6L = 1.53x10⁻³M
[HF] = 1.62g * (1mol /20g) = 0.081moles / 5.6L = 0.0145M
Kc = [1.03x10⁻³M] [1.53x10⁻³M] / [0.0145M]
<h3>Kc = 1.09x10⁻⁴</h3>
Answer:
A. power the Calvin cycle.
Explanation:
because it helps to run theblife of plants with easily
Answer : The molarity of
in the solution is 1.5 M.
Explanation : Given,
Moles of
= 3.0 mol
Volume of solution = 2.00 L
Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.
Formula used :

Now put all the given values in this formula, we get:

Therefore, the molarity of
in the solution is 1.5 M.