DNA is the molecule that carries the genetic code. These are found in the nucleus of cells. They copy themselves during replication when a cell divides and splits.
G. H2S contains two hydrogen atoms
The turbine since the definition of this word is <span> a machine for producing continuous power in which a wheel or rotor, typically fitted with vanes, is made to revolve by a fast-moving flow of water, steam, gas, air, or other fluid. </span>
Answer:
1) correct
2) incorrect
3) correct
4)incorrect
Explanation:
1) A Lewis acid is a substance that accepts a nonbonding pair of electrons.
A Bronsted-Lowry acid is a substance that donates a proton H⁺
Since the donation of a proton involves the acceptance of a pair of electrons, every Bronsted-Lowry acid is also a Lewis acid.
2)A Lewis acid not necessarily needs to have a proton to be donated.
3) Conjugated acids of weak bases are strong acids and conjugated acids of strong bases are weak acids.
4)K⁺ comes from a strong base, therefore is does not have an acidic behaviour.
Answer:
-177.9 kJ.
Explanation:
Use Hess's law. Ca(s) + CO2(g) + 1/2O2(g) → CaCO3(s) ΔH = -812.8 kJ 2Ca(s) + O2(g) → 2CaO(s) ΔH = -1269.8 kJ We need to get rid of the Ca and O2 in the equations, so we need to change the equations so that they're on both sides so they "cancel" out, similar to a system of equations. I changed the second equation. Ca(s) + CO2(g) + 1/2O2(g) → CaCO3(s) ΔH = -812.8 kJ 2CaO(s) → 2Ca(s) + O2(g) ΔH = +1269.8 kJ The sign changes in the second equation above since the reaction changed direction. Next, we need to multiply the first equation by two in order to get the coefficients of the Ca and O2 to match those in the second equation. We also multiply the enthalpy of the first equation by 2. 2Ca(s) + 2CO2(g) + O2(g) → 2CaCO3(s) ΔH = -1625.6 kJ 2CaO(s) → 2Ca(s) + O2(g) ΔH = +1269.8 kJ Now we add the two equations. The O2 and 2Ca "cancel" since they're on opposite sides of the arrow. Think of it more mathematically. We add the two enthalpies and get 2CaO(s) + 2CO2(g) → 2CaCO3(s) and ΔH = -355.8 kJ. Finally divide by two to get the given equation: CaO(s) + CO2(g) → CaCO3(s) and ΔH = -177.9 kJ.