Answer:
Limiting reactant is NiSO₄
Explanation:
The reaction of aluminum metal with aqueous nickel(II) sulfate to produce aqueous aluminum sulfate and nickel is:
2 Al(s) + 3 NiSO₄ → Al₂(SO₄)₃ + 3 Ni
<em>That means 2 moles of Al react with 3 moles of nickel sulfate.</em>
<em />
Moles of Al and NiSO₄ are:
Al: 108g × (1mol / 26.98g) = 4.00 moles of Al
NiSO₄: 464g × (1mol / 154.75g) = 3.00 moles of NiSO₄
For a complete reaction of aluminium there are necessary:
4.00mol Al ₓ ( 3 moles NiSO₄ / 2 moles Al) = 6 moles of NiSO₄
As you have just 3.00 moles of NiSO₄, the <em>limiting reactant is NiSO₄</em>
In order to answer this, you need to find the empirical data for the standard entropies. Please refer to this link: http://www.mrbigler.com/misc/energy-of-formation.PDF
For NO₂ gas, the entropy is 240 J/mol-K. For N₂O₄ gas, the entropy is 304.2 J/mol-K. Therefore, <em>the statement is false.</em>
Answer:
Percentage of oxygen = 30%
Percentage of carbon = 30%
Percentage of hydrogen = 40%
Explanation:
Formula:
Percentage of element = given amount / total amount × 100
Given compound:
C₆H₈O₆
Number of atoms of carbon = 6
Number of atoms of hydrogen = 8
Number of atoms of oxygen = 6
Total number of atoms = 20
Percentage of carbon = 6/20 × 100
Percentage of carbon = 30%
Percentage of Hydrogen = 8/20 × 100
Percentage of Hydrogen = 40%
Percentage of oxygen = 6/20 × 100
Percentage of oxygen = 30%
Answer:
The much higher power density offered by lithium ion batteries is a distinct advantage. Electric vehicles also need a battery technology that has a high energy density. ... Lithium ion cells is that their rate of self-discharge is much lower than that of other rechargeable cells such as Ni-Cad and NiMH forms.
Put this into your own words or teachers will make you redo it
Answer: Option (4) is the correct answer.
Explanation:
It is known that density is mass divided by volume.
Mathematically, Density = 
Since, density is directly proportional to mass. So, more is the mass of an element more will be its density.
Mass of magnesium is 24.305 g/mol.
Mass of barium is 137.327 g/mol.
Mass of beryllium is 9.012 g/mol
Mass of radium is 226 g/mol.
Hence, radium has more mass therefore it will have the greatest density at STP.