Answer:
The answer to your question is:
1.- CO
2.- 0.414 moles of CO2
Explanation:
Data
2CO + O2 ⇒ 2CO2
CO = 0.414 moles
O2 = 0.418
Process
theoretical ratio CO/O2 = 2/1 = 1
experimental ratio CO/O2 = 0.414/0.418 = 0.99
Then the limiting reactant is CO
2.-
2 moles of CO --------------- 2 moles of CO2
0.414 moles of CO --------- x
x = (0.414 x 2) / 2
x = 0.414 moles of CO2
They depend on nitrogen-fixing bacteria, which convert atmospheric nitrogen into a usable form.
(does this belong in chemistry?)
anyways, the parent was most likely a kid who wanted privacy. they wanted something so they are giving it to their kids.
Answer:
Rb+
Explanation:
Since they are telling us that the equivalence point was reached after 17.0 mL of 2.5 M HCl were added , we can calculate the number of moles of HCl which neutralized our unknown hydroxide.
Now all the choices for the metal cation are monovalent, therefore the general formula for our unknown is XOH and we know the reaction is 1 equivalent acid to 1 equivalent base. Thus we have the number of moles, n, of XOH and from the relation n = M/MW we can calculate the molecular weight of XOH.
Thus our calculations are:
V = 17.0 mL x 1 L / 1000 mL = 0.017 L
2.5 M HCl x 0.017 L = 2.5 mol/ L x 0.017 L = 0.0425 mol
0.0425 mol = 4.36 g/ MW XOH
MW of XOH = (atomic weight of X + 16 + 1)
so solving the above equation we get:
0.0425 = 4.36 / (X + 17 )
0.7225 +0.0425X = 4.36
0.0425X = 4.36 -0.7225 = 3.6375
X = 3.6375/0.0425 = 85.59
The unknown alkali is Rb which has an atomic weight of 85.47 g/mol