Yes because I went through college and learned this
The crest is cover distance. <span>The </span>speed<span> of a wave indicate how fast wave is moving. </span>T<span>he speed is the distance traveled by a crest in a given interval of time. Greater distance in same amount of time means wave travel faster.
speed of wave = distance/time.
speed of wave = 0,2 m </span>÷ 0,2 s = 1 m/s.
Answer:
- 6.38x10²² molecules C₆H₁₂O₆
Explanation:
First we <u>convert the given masses into moles</u>, using the <em>compounds' respective molar mass</em>:
- 64.7 g N₂ ÷ 28 g/mol = 2.31 mol N₂
- 83 g CCl₄ ÷ 153.82 g/mol = 0.540 mol CCl₄
- 19 g C₆H₁₂O₆ ÷ 180 g/mol = 0.106 mol C₆H₁₂O₆
Then we multiply each amount by <em>Avogadro's number</em>, to <u>calculate the number of molecules</u>:
- 2.31 mol N₂ * 6.023x10²³ molecules/mol = 1.39x10²⁴ molecules
- 0.540 mol CCl₄ * 6.023x10²³ molecules/mol = 3.25x10²³ molecules
- 0.106 mol C₆H₁₂O₆ * 6.023x10²³ molecules/mol = 6.38x10²² molecules
To get the value of ΔG we need to get first the value of ΔG°:
when ΔG° = - R*T*㏑K
when R is constant in KJ = 0.00831 KJ
T is the temperature in Kelvin = 25+273 = 298 K
and K is the equilibrium constant = 4.5 x 10^-4
so by substitution:
∴ ΔG° = - 0.00831 * 298 K * ㏑4.5 x 10^-4
= -19 KJ
then, we can now get the value of ΔG when:
ΔG = ΔG° - RT*㏑[HNO2]/[H+][NO2]
when ΔG° = -19 KJ
and R is constant in KJ = 0.00831
and T is the temperature in Kelvin = 298 K
and [HNO2] = 0.21 m & [H+] = 5.9 x 10^-2 & [NO2-] = 6.3 x 10^-4 m
so, by substitution:
ΔG = -19 KJ - 0.00831 * 298K* ㏑(0.21/5.9x10^-2*6.3 x10^-4 )
= -40
Answer:
I'm assuming atmospheric pressure, since it says she is measuring pressure exerted my atmospheric gases