Answer: B, a fusion recrion creates waste material that is easier to store than fission.
Fusion produces far less harmful waste than fission does. The reliance of something independent like whether a reaction will stop on its own when something goes wrong is never indefinite (technological failures are unpredictable and destructive a lot of the time when it comes down to nuclear power).
<span>If a lever has a constant force applied at 90∘ to the lever arm at a fixed distance from the pivot point (point of rotation), the torque on the lever is given by Torque = force (at 90∘ to lever arm) × distance to pivot point
Force should be perpendicular to the lever arm
Therefore; you would do 15N X 2.0 m = 30 Nm or 30Joules</span>
Answer:
<u>225.6 kJ</u>, <em>assuming the water is already at 100 °C</em>
Explanation:
The correct answer to this question will depend on the initial temperature of the water to which heat is added to produce steam. Energy is required to raise the water temperature to 100°C. At that point, an energy of vaporization is needed to convert liquid water at 100 °C to water vapor at 100°C. The heat of vaporization for water is 2256.4 kJ/kg. The energy required to bring 100g of water from a lower temperature to 100°C is calculated at 4.186 J/g°C. We don't know the starting temperature, so this step cannot be calculated.
<em><u>Assuming</u></em> that we are already at 100 °C, we can calculate the heat required for vaporization:
(100.0g)(1000.0g/1 kg)(2256.4 kJ/kg) = 225.6 kJ for 100 grams water.
Hydrocarbons. They usually burn. In fact, I can't think of one that does not.
The alloy has a density of 21.186g/cc. So for a kilogram or 1000 grams/21.186 g/cc= 45.7 cc. So the answer is 45.7 cc of the allow to make up a kilogram which shows that the density of the allow can be used to calculate the volume of a larger mass ie the kilogram.