If U-235 decays into Cs-135 and 4 neutrons, the other nuclide that will be produced is Rb-96 (option D).
<h3>What is radioactive decay?</h3>
A radioactive decay is the process by which an unstable large nuclei emit subatomic particles and disintegrate into one or more smaller nuclei.
According to this question, a radioactive material Uranium- 235 undergoes radioactive decay into Cs- 135 and 4 neutrons (1/0n).
This means that the mass of the products we have is 135 + 4 = 139.
The mass of the nuclide left must be 235 - 139 = 96, hence, the other nuclide that will be produced is Rb-96.
Learn more about radioactive decay at: brainly.com/question/1770619
#SPJ1
Answer:
H2SO4(aq) + MgO(s) → H2O(l) + MgSO4(aq)
Explanation:
We must recall that the oxides of metals are bases. These metal oxides can react with dilute acids to yield salt and water.
Bearing that in mind, we want to obtain magnesium sulfate from a metal oxide and dilute acid.
In this case we need magnesium oxide and dilute sulphuric acid. The reaction occurs as follows;
H2SO4(aq) + MgO(s) → H2O(l) + MgSO4(aq)
The volume of a sample of ammonia gas : 5.152 L
<h3>Further explanation</h3>
Given
0.23 moles of ammonia
Required
The volume of a sample
Solution
Assumed on STP
Conditions at T 0 ° C and P 1 atm are stated by STP (Standard Temperature and Pressure). At STP, Vm is 22.4 liters / mol.
So for 0.23 moles :
= 0.23 x 22.4 L
= 5.152 L
Answer:
What will determine the number of moles of hydronium in an aqueous solution of a strong monoprotic acid? The amount of acid that was added.
Explanation: