Answer:
Option B. 4 moles of the gaseous product
Explanation:
Data obtained from the question include:
Initial volume (V1) = V
Initial number of mole (n1) = 2 moles
Final volume (V2) = 2V
Final number of mole (n2) =..?
Applying the Avogadro's law equation, we can obtain the number of mole of the gaseous product as follow:
V1/n1 = V2/n2
V/2 = 2V/n2
Cross multiply
V x n2 = 2 x 2V
Divide both side by V
n2 = (2 x 2V)/V
n2 = 2 x 2
n2 = 4 moles
Therefore, 4 moles of the gaseous product were produced.
Answer:
B
Explanation:
B. There are two atoms of Nitrogen and two atoms of Hydrogen combined to make Ammonia.
Answer:
Ammonia is limiting reactant
Amount of oxygen left = 0.035 mol
Explanation:
Masa of ammonia = 2.00 g
Mass of oxygen = 4.00 g
Which is limiting reactant = ?
Balance chemical equation:
4NH₃ + 3O₂ → 2N₂ + 6H₂O
Number of moles of ammonia:
Number of moles = mass/molar mass
Number of moles = 2.00 g/ 17 g/mol
Number of moles = 0.12 mol
Number of moles of oxygen:
Number of moles = mass/molar mass
Number of moles = 4.00 g/ 32 g/mol
Number of moles = 0.125 mol
Now we will compare the moles of ammonia and oxygen with water and nitrogen.
NH₃ : N₂
4 : 2
0.12 : 2/4×0.12 = 0.06
NH₃ : H₂O
4 : 6
0.12 : 6/4×0.12 = 0.18
O₂ : N₂
3 : 2
0.125 : 2/3×0.125 = 0.08
O₂ : H₂O
3 : 6
0.125 : 6/3×0.125 = 0.25
The number of moles of water and nitrogen formed by ammonia are less thus ammonia will be limiting reactant.
Amount of oxygen left:
NH₃ : O₂
4 : 3
0.12 : 3/4×0.12= 0.09
Amount of oxygen react = 0.09 mol
Amount of oxygen left = 0.125 - 0.09 = 0.035 mol
Once you identify the compound as Ionic<span>, </span>Molecular, or an Acid, follow the individual ... chemicalformulas<span>, write </span>whether<span> the compound is </span>ionic or molecular<span>, and ...</span>