B² = 8b + 84
b² - 8b - 84 = 0
b = <u>-(-8) +/- √((8)² - 4(1)(-84))</u>
2(1)<u>
</u>b = <u>8 +/- √(64 + 336)</u>
2
b = <u>8 +/- √(400)
</u> 2<u>
</u>b = <u>8 +/- 20
</u> 2
b = 4 <u>+</u> 10
b = 4 + 10 b = 4 - 10
b = 14 b = -6
<u />
The value of the expression is 
Explanation:
The expression is ![$2 \times[(12+2) \times 5]+\frac{3}{2}$](https://tex.z-dn.net/?f=%242%20%5Ctimes%5B%2812%2B2%29%20%5Ctimes%205%5D%2B%5Cfrac%7B3%7D%7B2%7D%24)
The value of the expression can be determined using the rule PEMDAS.
According to the PEMDAS rule, first we need to perform the operation which is within the parenthesis.
Thus, the expression becomes,

Multiplying the values within parenthesis, we have,

Using PEMDAS, we need to multiply the numbers.

Again using PEMDAS rule, divide the number,

Finally, using PEMDAS, let us add the values, we have,

Thus, the value of the expression is 
Answer:
10 hours
Step-by-step explanation:
(150/x) + 1.5 + (450/(x+15)) = 600/x
Multiply through by x(x + 15):
150(x + 15) + 1.5x(x + 15) + 450x = 600(x + 15)
150x + 2250 + 1.5x^2 + 22.5x + 450x = 600x + 9000
150x + 2250 + 1.5x^2 + 22.5x + 450x - 600x - 9000 = 0
1.5x^2 + 22.5x - 6750 = 0
x = (-22.5 +/- sqrt(22.5^2 - 4(1.5)(-6750))) / (2*1.5)
x = (-22.5 +/- sqrt(506.25 + 40500)) / 3
x = (-22.5 +/- sqrt(41006.25)) / 3
x = (-22.5 +/- 202.5) / 3
x = 180/3 or -225/3
x = 60 or -75
But a negative number doesn't make sense, so therefore x = 60, so the journey took 600/60 = 10 hours.
Look at this:
2x+$2,000=$28,000
2x=$28,000-$2,000
2x=$26,000
x=26,000 divided by 2
x=$13,000
Answer:
Plese read the complete procedure below:
Step-by-step explanation:
The polynomial is p(a) = (a^4 - 6a^3 + 3a^2 + 26a – 24)
a)
1 -6 3 26 -24 |<u> 1 </u>
<u> 1 -5 -2 24</u>
1 -5 -2 24 0
The remainder is zero, then (a-1) is a factor of the polynomial
b)
1 -6 3 26 -24 |<u> 2 </u>
<u> 2 -8 10 72</u>
1 -4 5 36 48
When p(a) is divided by (a-2) the remainder 28/p(a)
1 -6 3 26 -24 |<u> - 4 </u>
<u> -4 40 172 -792</u>
1 -10 43 198 -816
When p(a) is divided by (a-2) the remainder -816/p(a)
c) I attached an image of the long division below: