Answer: I would say the object with the Lower velocity because Lighter with Higher velocity makes it heavy, velocity is how heavy something is so the lighter it is the less difficult it will be to catch.
Answer:
B = 191.26 cm
θ = -14.73°
Explanation:
given,
magnitude of the first displacement(A) = 146 cm
at an angle of 124°
resultant magnitude = 137 cm
and angle made with x-axis by the resultant(R) = 32.0°
component of A in X and Y direction
A x = A cos θ = 146 cos 120° = -73 cm
A y = A sin θ = 146 sin 120° = 126.4 cm
now component of resultant in x and y direction
R x = 137 cos 35°
= 112.2 cm
R y = 137 sin 35°
= 78.6 cm
resultant is the sum of two vectors
R = A + B
R x = A x + B x
B x = 112.2 - (-73) = 185.2 cm
B y = R y - A y
B y = 78.6 - 126.4 = -47.8 cm
magnitude of B
B = 
B = 
B = 191.26 cm
angle
θ = -14.73°
There is more thermal energy in the lake because there is more water which is more thermal energy
Answer:
wave number = 0.3348 * 10⁻⁸ cm⁻¹
Explanation:
Given data:
K = 4.808 * 10^2 N/m
<u>Determine the wave number for the infrared absorption</u>
considering vibrational Spectre
k' = 2n / λ ---- ( 1 )
λ = c / v ----- ( 2 )
v = √k / u --- ( 3 )
where : k' = wave number, λ = wavelength, c = velocity of light, v = frequency, k = force constant, u = reduced mass
u = 1.90415 for D35Cl
Input equations 2 and 3 into equation 1 to get the final equation
K' = 2n/c * √k / u
= ( 2 * 3.14 ) / 2.98 * 10^8 ] * (√ 4.808 * 10^2 / 1.90415 )
= 33.486 * 10⁻⁸ m⁻¹ ≈ 0.3348 * 10⁻⁸ cm⁻¹
All of those! A qualitative observation is any one that doesn't include numbers. <em>Quantitative </em>observations include numbers, but not usually any other kind of information.