Answer:
Explanation:
The formula for critical stress is


K is the plane strain fracture toughness
Y is dimensionless parameters
We are to Determine the Critical stress
Now replacing the critical stress with 54.8
a with 0.2mm = 0.2 x 10⁻³
Y with 1

The fracture will not occur because this material can handle a stress of 2186.20Mpa before fracture. it is obvious that is greater than 2023Mpa
Therefore, the specimen does not failure for surface crack of 0.2mm
Answer:
The Debye temperature for aluminum is 375.2361 K
Explanation:
Molecular weight of aluminum=26.98 g/mol
T=15 K
The mathematical equation for the specific heat and the absolute temperature is:

Substituting in the expression of the question:


Here

Replacing:

Answer:
In Rankine 524.07°R
In kelvin 291 K
In Fahrenheit 64.4°F
Explanation:
We have given temperature 18°C
We have to convert this into Rankine R
From Celsius to Rankine we know that 
We have to convert 18°C
So 
Conversion from Celsius to kelvin
We have to convert 18°C

Conversion of Celsius to Fahrenheit
a= the force of gravity b= the amount of bicker to maple syrup ratio
Answer:
flow ( m ) = 4.852 kg/s
Explanation:
Given:
- Inlet of Turbine
P_1 = 10 MPa
T_1 = 500 C
- Outlet of Turbine
P_2 = 10 KPa
x = 0.9
- Power output of Turbine W_out = 5 MW
Find:
Determine the mass ow rate required
Solution:
- Use steam Table A.4 to determine specific enthalpy for inlet conditions:
P_1 = 10 MPa
T_1 = 500 C ---------- > h_1 = 3375.1 KJ/kg
- Use steam Table A.6 to determine specific enthalpy for outlet conditions:
P_2 = 10 KPa -------------> h_f = 191.81 KJ/kg
x = 0.9 -------------> h_fg = 2392.1 KJ/kg
h_2 = h_f + x*h_fg
h_2 = 191.81 + 0.9*2392.1 = 2344.7 KJ/kg
- The work produced by the turbine W_out is given by first Law of thermodynamics:
W_out = flow(m) * ( h_1 - h_2 )
flow ( m ) = W_out / ( h_1 - h_2 )
- Plug in values:
flow ( m ) = 5*10^3 / ( 3375.1 - 2344.7 )
flow ( m ) = 4.852 kg/s