Answer:
6Fe^2+(aq) -------> 6Fe^3+(aq) + 6e
Explanation:
The balanced oxidation half equation is;
6Fe^2+(aq) -------> 6Fe^3+(aq) + 6e
A redox reaction is actually an acronym for oxidation-reducation reaction. Since the both reactions are complementary, there can't be oxidation without reduction and there can't be reduction without oxidation.
The main characteristic of redox reactions is that electrons are transferred in the process. The number of electrons transferred is usually deduced from the balanced reaction equation. For this reaction, the balanced overall reaction equation is;
Cr2O7^2–(aq) + 6Fe^2+(aq) +14H^+(aq)→ 2Cr^3+(aq) + 6Fe^3+ (aq) + 7H2O(l)
It is clear from the equation above that six electrons were transferred. Thus six Fe^2+ ions lost one electron each in the oxidation half equation as shown in the balanced oxidation half equation above.
Answer:
The answer to your question is 1.1 moles of water
Explanation:
2Al(OH)₃ + 3H₂SO₄ ⇒ Al₂(SO₄)₃ + 6H₂O
0.45 mol 0.55 mol ?
Process
1.- Calculate the limiting reactant
Theoretical proportion
Al(OH)₃ / H₂SO₄ = 2/3 = 0.667
Experimental proportion
Al(OH)₃ / H₂SO₄ = 0.45 / 0.55 = 0.81
From the proportions, we conclude that the limiting reactant is H₂SO₄
2.- Calculate the moles of H₂O
3 moles of H₂SO₄ ---------------- 6 moles of water
0.55 moles of H₂SO₄ ----------- x
x = (0.55 x 6) / 3
x = 3.3 / 3
x = 1.1 moles of water
Binary compounds have 2 different elements, and ternary compounds have 3
Nickel(III)oxide: binary, Ni2O3
Copper (II)iodide: binary, CuI2
Tin(IV) nitride: binary, Sn3N4
Chromium (II)bromide: binary, CrBr2
<span>Iron(III)phosphide: binary, FeP</span>