40 J/g is the heat of vaporization of the liquid.
Answer: Option D
<u>Explanation:</u>
Given that mass of liquid sample: m = 10 g
And, Specific heat of the liquid: S = 2 J/g K
Also, the increase in the temperature of the liquid, ![\Delta T = T_{2}-T_{1} = 10 K](https://tex.z-dn.net/?f=%5CDelta%20T%20%3D%20T_%7B2%7D-T_%7B1%7D%20%3D%2010%20K)
Therefore, the total amount of heat energy required is given by:
![q_{1} = m \times S \times\left(T_{2}-T_{1}\right) = 10 \times 2 \times 10 = 200 J](https://tex.z-dn.net/?f=q_%7B1%7D%20%3D%20m%20%5Ctimes%20S%20%5Ctimes%5Cleft%28T_%7B2%7D-T_%7B1%7D%5Cright%29%20%3D%2010%20%5Ctimes%202%20%5Ctimes%2010%20%3D%20200%20J)
According to the given data in the question,
Total heat energy supplied, q = 400 J
Rest of heat would be ![q_{2}=q-q_{1}=400-200=200 \mathrm{J}](https://tex.z-dn.net/?f=q_%7B2%7D%3Dq-q_%7B1%7D%3D400-200%3D200%20%5Cmathrm%7BJ%7D)
Now, 200 J vaporizes the mass, half of the liquid from full portion boiled away. So,
![m^{\prime} = \frac{10}{2} = 5 \mathrm{g}](https://tex.z-dn.net/?f=m%5E%7B%5Cprime%7D%20%3D%20%5Cfrac%7B10%7D%7B2%7D%20%3D%205%20%5Cmathrm%7Bg%7D)
Latent heat of vaporization of the liquid is
. It can be calculated as below,
![q_{2} = m^{\prime} L_{v}](https://tex.z-dn.net/?f=q_%7B2%7D%20%3D%20m%5E%7B%5Cprime%7D%20L_%7Bv%7D)
![L_{v} = \frac{q_{2}}{m^{\prime}} = \frac{200}{5} = 40 \mathrm{J} / \mathrm{g}](https://tex.z-dn.net/?f=L_%7Bv%7D%20%3D%20%5Cfrac%7Bq_%7B2%7D%7D%7Bm%5E%7B%5Cprime%7D%7D%20%3D%20%5Cfrac%7B200%7D%7B5%7D%20%3D%2040%20%5Cmathrm%7BJ%7D%20%2F%20%5Cmathrm%7Bg%7D)