Explanation:
you add the from head to tail. Head is the triangle and tail is the final point of the vector
Answer:
E = ρ ( R1²) / 2 ∈o R
Explanation:
Given data
two cylinders are parallel
distance = d
radial distance = R
d < (R2−R1)
to find out
Express answer in terms of the variables ρE, R1, R2, R3, d, R, and constants
solution
we have two parallel cylinders
so area is 2
R × l
and we apply here gauss law that is
EA = Q(enclosed) / ∈o ......1
so first we find Q(enclosed) = ρ Volume
Q(enclosed) = ρ (
R1² × l )
so put all value in equation 1
we get
EA = Q(enclosed) / ∈o
E(2
R × l) = ρ (
R1² × l ) / ∈o
so
E = ρ ( R1²) / 2 ∈o R
d = distance the bowling ball has fallen = ?
g = acceleration due to gravity acting on the ball by earth = 9.8 m/s²
t = time of fall for the ball = 3.0 s
distance the ball has fallen is given as
d = (0.5) g t²
inserting the above values in the equation above
d = (0.5) (9.8 m/s²) (3.0 s)²
d = (0.5) (9.8 m/s²) (9.0 s²)
d = (4.9 m/s²) (9.0 s²)
d = 44.1 m
hence the distance fallen by the ball comes out to be 44.1 m
A 60.0 kg secretary running up a 4.0 m tall flight of stairs in 4.2 s has an average power of 560 W (Option b).
<h3>What is power?</h3>
Power is the work done over a period of time.
A secretary with a mass (m) of 60.0 kg runs up a 4.0 m (d) tall flight of stairs. Given gravity (g) is 9.81 m/s², the work (W) done is:
W = m × g × d = 60.0 kg × 9.81 m/s² × 4.0 m = 2.35 × 10³ J
They do 2.4 × 10³ J of work in 4.2 s (t). The average power (P) is:
P = W / t = 2.35 × 10³ J / 4.2 s = 560 W
A 60.0 kg secretary running up a 4.0 m tall flight of stairs in 4.2 s has an average power of 560 W (Option b).
Learn more about power here: brainly.com/question/911620
#SPJ1