Answer:
The concentration is [-1 + sqrt(1+0.11t)]/0.1542 M
Explanation:
Let the concentration of CH3CHO after selected reaction times be y
Rate = Ky^2 = change in concentration of CH3CHO/time
K = 0.0771 M^-1 s^-1
Change in concentration of CH3CHO = 0.358 - y
0.0771y^2 = 0.358-y/t
0.0771ty^2 = 0.358 - y
0.0771ty^2 + y - 0.358 = 0
The value of y must be positive and is obtained in terms of t using the quadratic formula
y = [-1 + sqrt(1^2 -4(0.0771t)(-0.358)]/2(0.0771) = [-1 + sqrt(1+0.11t)]/0.1542 M
Do you have a picture of where you go this question from?
Answer:
0.120M is the concentration of the solution
Explanation:
<em>Assuming the mass of sodium nitrate dissolved was 2.552g</em>
<em />
Molar concentration is an unit of concentration widely used in chemsitry defined as the moles of solute (In this case NaNO3) in 1L of solution.
To find this question we must find the moles of NaNO3 in 2.552g. With this mass and the volume (250mL = 0.250L) we can find molar concentration as follows:
<em>Moles NaNO3 -Molar mass: 84.99g/mol-</em>
2.552g * (1mol / 84.99g) = 0.0300 moles NaNO3
<em>Molar concentration:</em>
0.0300 moles NaNO3 / 0.250L =
<h3>0.120M is the concentration of the solution</h3>
Complete Question
Questions Diagram is attached below
Answer:
*
*
*
Explanation:
From the question we are told that:
Temperature
Pressure
Volume
Generally the equation for gas Constant is mathematically given by
Therefore
Work-done
Generally the equation for internal energy is mathematically given by
Therefore
Simple cations are formally called by their element names with a suffixed Roman numeral in parentheses to indicate its charge. A simple anion has a name that is the original elemental name with the final syllable changed to -ide.