1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nata0808 [166]
3 years ago
12

What is net force?

Physics
1 answer:
kramer3 years ago
3 0

Answer:

A. The sum of all the forces acting on an object.

You might be interested in
Careful measurements have been made of Olympic sprinters in the 100-meter dash. A quite realistic model is that the sprinter's v
mihalych1998 [28]

Answer:

a.

\displaystyle a(0 )=8.133\ m/s^2

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=0.52\ m/s^2

b.\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. t=9.9 \ sec

Explanation:

Modeling With Functions

Careful measurements have produced a model of one sprinter's velocity at a given t, and it's is given by

\displaystyle V(t)=a(1-e^{bt})

For Carl Lewis's run at the 1987 World Championships, the values of a and b are

\displaystyle a=11.81\ ,\ b=-0.6887

Please note we changed the value of b to negative to make the model have sense. Thus, the equation for the velocity is

\displaystyle V(t)=11.81(1-e^{-0.6887t})

a. What was Lewis's acceleration at t = 0 s, 2.00 s, and 4.00 s?

To compute the accelerations, we must find the function for a as the derivative of v

\displaystyle a(t)=\frac{dv}{dt}=11.81(0.6887\ e^{0.6887t})

\displaystyle a(t)=8.133547\ e^{-0.6887t}

For t=0

\displaystyle a(0)=8.133547\ e^o

\displaystyle a(0 )=8.133\ m/s^2

For t=2

\displaystyle a(2)=8.133547\ e^{-0.6887\times 2}

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=8.133547\ e^{-0.6887\times 4}

\displaystyle a(4)=0.52\ m/s^2

b. Find an expression for the distance traveled at time t.

The distance is the integral of the velocity, thus

\displaystyle X(t)=\int v(t)dt \int 11.81(1-e^{-0.6887t})dt=11.81(t+\frac{e^{-0.6887t}}{0.6887})+C

\displaystyle X(t)=11.81(t+1.45201\ e^{-0.6887t})+C

To find the value of C, we set X(0)=0, the sprinter starts from the origin of coordinates

\displaystyle x(0)=0=>11.81\times1.45201+C=0

Solving for C

\displaystyle c=-17.1482\approx -17.15

Now we complete the equation for the distance

\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. Find the time Lewis needed to sprint 100.0 m.

The equation for the distance cannot be solved by algebraic procedures, but we can use approximations until we find a close value.

We are required to find the time at which the distance is 100 m, thus

\displaystyle X(t)=100=>11.81(t+1.45\ e^{-0.6887t})-17.15=100

Rearranging

\displaystyle t+1.45\ e^{-0.6887t}=9.92

We define an auxiliary function f(t) to help us find the value of t.

\displaystyle f(t)=t+1.45\ e^{-0.687t}-9.92

Let's try for t=9 sec

\displaystyle f(9)=9+1.45\ e^{-0.687\times 9}-9.92=-0.92

Now with t=9.9 sec

\displaystyle f(9.9)=9.9+1.45\ e^{-0.687\times 9.9}-9.92=-0.0184

That was a real close guess. One more to be sure for t=10 sec

\displaystyle f(10)=10+1.45\ e^{-0.687\times 10}-9.92=0.081

The change of sign tells us we are close enough to the solution. We choose the time that produces a smaller magnitude for f(t).  

At t\approx 9.9\ sec, \text{ Lewis sprinted 100 m}

7 0
3 years ago
What makes a model not useful?
lina2011 [118]
Answer is b hope this helps
8 0
2 years ago
Which element could be described by the list of properties above?
Murljashka [212]

Answer:  

list the properties

Explanation:

7 0
3 years ago
Read 2 more answers
A camera is equipped with a lens with a focal length of 34 cm. When an object 2.4 m (240 cm) away is being photographed, what is
puteri [66]

Answer:

The magnification is -6.05.

Explanation:

Given that,

Focal length = 34 cm

Distance of the image =2.4 m = 240 cm

We need to calculate the distance of the object

\dfrac{1}{u}+\dfrac{1}{v}=\dfrac{1}{f}

Where, u = distance of the object

v = distance of the image

f = focal length

Put the value into the formula

\dfrac{1}{u}=\dfrac{1}{34}-\dfrac{1}{240}

\dfrac{1}{u}=\dfrac{103}{4080}

u =\dfrac{4080}{103}

The magnification is

m = \dfrac{-v}{u}

m=\dfrac{-240\times103}{4080}

m = -6.05

Hence, The magnification is -6.05.

6 0
2 years ago
How do you change matter into other phases of matter?
Vera_Pavlovna [14]
Hey there!

There's many ways to do it - like melting and evaporating.

For example, we'll use water. Plain old water in a water bottle. Right now, it's in its liquid state of matter, but say you put it in the freezer for an hour. That would change its state of matter to solid, since it would be solid ice. Now, if you were to put it out in the sun on a blazing hot day for a couple of hours, it would evaporate and become water vapor, a gas. Lastly, if you can cool that water vapor it becomes a liquid again.

Hope this helps!
3 0
3 years ago
Other questions:
  • With some manipulation, the rydberg equation can be rewritten in the form e=constant×(1nf2−1ni2) which allows you to calculate t
    7·1 answer
  • Rutherford hypothesized that, in his experiment,more alpha particles would be deflected if ?
    13·1 answer
  • Objects that transmit some light and reflect/absorb the rest of the light, like stained glass, are
    10·1 answer
  • Luz, who is skydiving, is traveling at terminal velocity with her body parallel to the ground. She then changes her body positio
    13·1 answer
  • A rifle fires a bullet at a target. The speed of the bullet is 600m/s. The target is located 400m away. How long does it take fo
    12·1 answer
  • What is the acceleration of a car that travels in a straight line at a constant speed?
    9·1 answer
  • What is the value of the net electrostatic force on (a) particle 1 and (b) particle 2 due to the other particles
    8·1 answer
  • A spring is stretched 5 cm from its equilibrium position. If this stretching requires 30 J of work,
    15·1 answer
  • 3. True or false. All objects that are made of metal<br> are magnetic. Explain why or why not.
    9·1 answer
  • How does the law of conservation apply to Earth's Energy Budget?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!