Answer:
8.34
Explanation:
1) how much moles of NH₃ are in the reaction;
2) how much moles of H₂ are in the reaction;
3) the required mass of the H₂.
all the details are in the attachment; the answer is marked with red colour.
Note1: M(NH₃) - molar mass of the NH₃, constant; M(H₂) - the molar mass of the H₂, constant; ν(NH₃) - quantity of NH₃; ν(H₂) - quantity of H₂.
Note2: the suggested solution is not the shortest one.
Answer:
so you can do the maths your self
Explanation:
isotopes are elements with he same proton number but difference in their neutron number
- proton number is also known as the atomic number
- mass number is the sum of the proton number and the neutron number
- mass number = proton number + neutron number
On the other hand ammonia is a very dangerous chemical which has a pungent smell and effect the eyes of the user. Thus it kept always in the fume exhaust hood for storing and dispensing function.
The pH of ammonia buffer contains ammonium hydroxide (NH₄OH) and a salt of ammonia with a strong acid like (HCl) which produces, ammonium chloride (NH₄Cl) mixture. The evaporation rate of ammonia is so high at room temperature thus on opening of the buffer solution the ammonia get evaporated very fast and the concentration of ammonia decreases which affect the pH of the buffer solution.
Thus the reason to put ammonia buffer in fume hood is explained.
<span>This would be the activation energy. This is usually in the form of heat, which allows the reaction to undergo some sort of transition. Many times, enzymes can be used as catalysts to lower the activation energy required for the reaction to take place.</span>