Answer:
The molecular formula lists the symbol of each element within the compound followed by a number (usually in subscript). The letter and number indicate how many of each type of element are in the compound. If there is only one atom of a particular element, then no number is written after the element.
Answer:
f. Sn^4+
c. second
e. Al^3+
d. third
Explanation:
This question comes from a quantitative analysis showing the flowchart of a common scheme for identifying cations.
Now, from the separation scheme, Let's assume that Sn⁴⁺ & Al³⁺ were given; Then, Yes, the separation will work.
However, there will be occurrence of precipitation after the 1st step1.
So, the <u>Sn⁴⁺</u> cation will precipitate after the <u>second </u>step. Then the <u>Al³⁺</u> cation will precipitate after the <u>third</u> step.
Answer:
Kc for this equilibrium is 2.30*10⁻⁶
Explanation:
Equilibrium occurs when the rate of the forward reaction equals the rate of the reverse reaction and the concentrations of reactants and products are held constant.
Being:
aA + bB ⇔ cC + dD
the equilibrium constant Kc is defined as:
![Kc=\frac{[C]^{c}*[D]^{d} }{[A]^{a} *[B]^{b} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%2A%5BD%5D%5E%7Bd%7D%20%20%7D%7B%5BA%5D%5E%7Ba%7D%20%2A%5BB%5D%5E%7Bb%7D%20%7D)
In other words, the constant Kc is equal to the multiplication of the concentrations of the products raised to their stoichiometric coefficients by the multiplication of the concentrations of the reactants also raised to their stoichiometric coefficients. Kc is constant for a given temperature, that is to say that as the reaction temperature varies, its value varies.
In this case, being:
2 NH₃(g) ⇔ N₂(g) + 3 H₂(g)
the equilibrium constant Kc is:
![Kc=\frac{[N_{2} ]*[H_{2} ]^{3} }{[NH_{3} ]^{2} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BN_%7B2%7D%20%5D%2A%5BH_%7B2%7D%20%5D%5E%7B3%7D%20%20%7D%7B%5BNH_%7B3%7D%20%5D%5E%7B2%7D%20%7D)
Being:
- [N₂]= 0.0551 M
- [H₂]= 0.0183 M
- [NH₃]= 0.383 M
and replacing:

you get:
Kc= 2.30*10⁻⁶
<u><em>Kc for this equilibrium is 2.30*10⁻⁶</em></u>
The masses of the nucleus and the electron cloud of an atom is balanced if false. Do you have any answer options??
<span>Li2O2 is the formula
</span>